65 research outputs found

    Endothelial apoptotic activity of angiocidin is dependent on its polyubiquitin binding activity

    Get PDF
    We recently cloned the full-length cDNA of a tumour-associated protein. The recombinant protein expressed in bacteria and referred to as angiocidin has potent antitumour activity in vivo and in vitro. Angiocidin inhibits tumour growth and angiogenesis by inducing apoptosis in endothelial cells. Based on the sequence similarity of angiocidin to S5a, one of the major polyubiquitin recognition proteins in eukaryotic cells, we postulated that the antiendothelial activity of angiocidin could be due in part to its polyubiquitin binding activity. In support of this hypothesis, we show that angiocidin binds polyubiquitin in vivo with high affinity and colocalises with ubiquitinated proteins on the surface of endothelial cells. Binding is blocked with an antiubiquitin antibody. Angiocidin treatment of endothelial cells transfected with a proteasome fluorescent reporter protein showed a dose-dependent inhibition of proteasome activity and accumulation of polyubiquitinated proteins. Full-length angiocidin bound polyubiquitin while three angiocidin recombinant proteins whose putative polyubiquitin binding sites were mutated either failed to bind polyubiquitin or had significantly diminished binding activity. The in vitro apoptotic activity of these mutants correlated with their polyubiquitin binding activity. These data strongly argue that the apoptotic activity of angiocidin is dependent on its polyubiquitin binding activity

    The functional relationship between transglutaminase 2 and transforming growth factor β1 in the regulation of angiogenesis and endothelial-mesenchymal transition

    Get PDF
    The importance of transglutaminase 2 (TG2) in angiogenesis has been highlighted in recent studies, but other roles of this multi-functional enzyme in endothelial cell (EC) function still remains to be fully elucidated. We previously showed that the extracellular TG2 is involved in maintaining tubule formation in ECs by a mechanism involving matrix-bound vascular endothelial growth factor (VEGF) signalling. Here, by using the ECs and fibroblast co-culture and ECs 3D culture models, we demonstrate a further role for TG2 in both endothelial tubule formation and in tubule loss, which involves its role in the regulation of transforming growth factor β1 (TGFβ1) and Smad signalling. We demonstrate that inhibition of tubule formation by TG2 inhibitors can be restored by add-back of exogenous TGFβ1 at pg/ml levels and show that TG2 -/- mouse ECs are unable to form tubules in 3D culture and display negligible Smad signalling compared to wild-type cells. Loss of tubule formation in the TG2 -/- ECs can be reconstituted by transduction with TG2. We demonstrate that extracellular TG2 also has an important role in TGFβ1-induced transition of ECs into myofibroblast-like cells (endothelial-mesenchymal transition), resulting in loss of EC tubules and tubule formation. Our data also indicate that TG2 may have a role in regulating TGFβ signalling through entrapment of active TGFβ1 into the extracellular matrix. In conclusion, our work demonstrates that TG2 has multi-functional roles in ECs where its ability to fine-tune of TGFβ1 signalling means it can be involved in both endothelial tubule formation and tubule rarefaction

    A novel extracellular role for tissue transglutaminase in matrix-bound VEGF-mediated angiogenesis

    Get PDF
    The importance of tissue transglutaminase (TG2) in angiogenesis is unclear and contradictory. Here we show that inhibition of extracellular TG2 protein crosslinking or downregulation of TG2 expression leads to inhibition of angiogenesis in cell culture, the aorta ring assay and in vivo models. In a human umbilical vein endothelial cell (HUVEC) co-culture model, inhibition of extracellular TG2 activity can halt the progression of angiogenesis, even when introduced after tubule formation has commenced and after addition of excess vascular endothelial growth factor (VEGF). In both cases, this leads to a significant reduction in tubule branching. Knockdown of TG2 by short hairpin (shRNA) results in inhibition of HUVEC migration and tubule formation, which can be restored by add back of wt TG2, but not by the transamidation-defective but GTP-binding mutant W241A. TG2 inhibition results in inhibition of fibronectin deposition in HUVEC monocultures with a parallel reduction in matrix-bound VEGFA, leading to a reduction in phosphorylated VEGF receptor 2 (VEGFR2) at Tyr1214 and its downstream effectors Akt and ERK1/2, and importantly its association with b1 integrin. We propose a mechanism for the involvement of matrix-bound VEGFA in angiogenesis that is dependent on extracellular TG2-related activity

    Novel interactions of transglutaminase-2 with heparan sulphate proteoglycans: reflection on physiological implications

    Get PDF
    This mini-review brings together information from publications and recent conference proceedings that have shed light on the biological interaction between transglutaminase-2 and heparan sulphate proteoglycans. We subsequently draw hypothesis of possible implications in the wound healing process. There is a substantial overlap in the action of transglutaminase-2 and the heparan sulphate proteoglycan syndecan-4 in normal and abnormal wound repair. Our latest findings have identified syndecan-4 as a possible binding and signalling partner of fibronectinbound TG2 and support the idea that transglutaminase-2 and syndecan-4 acts in synergy

    A Phase I study of the angiogenesis inhibitor SU5416 (semaxanib) in solid tumours, incorporating dynamic contrast MR pharmacodynamic end points

    Get PDF
    SU5416 (Z-3-[(2,4-dimethylpyrrol-5-yl)methylidenyl]-2-indolinone; semaxanib) is a small molecule inhibitor of the vascular endothelial growth factor receptor (VEGFR)2. A Phase I dose escalation study was performed. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used as a pharmacodynamic assessment tool. In all, 27 patients were recruited. SU5416 was administered twice weekly by fixed rate intravenous infusion. Patients were treated in sequential cohorts of three patients at 48, 65, 85 110 and 145 mg m−2. A further dose level of 190 mg m−2 after a 2-week lead in period at a lower dose was completed; thereafter, the cohort at 145 mg m−2 was expanded. SU5416 showed linear pharmacokinetics to 145 mg m−2 with a large volume of distribution and rapid clearance. A significant degree of interpatient variability was seen. SU5416 was well tolerated, by definition a maximum-tolerated dose was not defined. No reproducible changes were seen in DCE-MRI end points. Serial assessments of VEGF in a cohort of patients treated at 145 mg m−2 did not show a statistically significant treatment-related change. Parallel assessments of the impact of SU5416 on coagulation profiles in six patients showed a transient effect within the fibrinolytic pathway. Clinical experience showed that patients who had breaks of therapy longer than a week could not have treatment reinitiated at a dose of 190 mg m−2 without unacceptable toxicity. The 145 mg m−2 dose level is thus the recommended dose for future study

    Association between high-dose erythropoiesis-stimulating agents, inflammatory biomarkers, and soluble erythropoietin receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-dose erythropoiesis-stimulating agents (ESA) for anemia of chronic kidney disease (CKD) have been associated with adverse clinical outcomes and do not always improve erythropoiesis. We hypothesized that high-dose ESA requirement would be associated with elevated inflammatory biomarkers, decreased adipokines, and increased circulating, endogenous soluble erythropoietin receptors (sEpoR).</p> <p>Methods</p> <p>A cross-sectional cohort of anemic 32 CKD participants receiving ESA were enrolled at a single center and cytokine profiles, adipokines, and sEpoR were compared between participants stratified by ESA dose requirement (usual-dose darbepoetin-α (< 1 μg/kg/week) and high-dose (≥1 μg/kg/week)).</p> <p>Results</p> <p>Baseline characteristics were similar between groups; however, hemoglobin was lower among participants on high-dose (1.4 μg/kg/week) vs usual-dose (0.5 μg/kg/week) ESA.</p> <p>In adjusted analyses, high-dose ESA was associated with an increased odds for elevations in c-reactive protein and interleukin-6 (p < 0.05 for both). There was no correlation between high-dose ESA and adipokines. Higher ESA dose correlated with higher levels of sEpoR (r<sub>s </sub>= 0.39, p = 0.03). In adjusted analyses, higher ESA dose (per μcg/kg/week) was associated with a 53% greater odds of sEpoR being above the median (p < 0.05).</p> <p>Conclusion</p> <p>High-dose ESA requirement among anemic CKD participants was associated with elevated inflammatory biomarkers and higher levels of circulating sEpoR, an inhibitor of erythropoiesis. Further research confirming these findings is warranted.</p> <p>Trial registration</p> <p>Clinicaltrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT00526747">NCT00526747</a></p

    Erythropoietin Blockade Inhibits the Induction of Tumor Angiogenesis and Progression

    Get PDF
    BACKGROUND: The induction of tumor angiogenesis, a pathologic process critical for tumor progression, is mediated by multiple regulatory factors released by tumor and host cells. We investigated the role of the hematopoietic cytokine erythropoietin as an angiogenic factor that modulates tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: Fluorescently-labeled rodent mammary carcinoma cells were injected into dorsal skin-fold window chambers in mice, an angiogenesis model that allows direct, non-invasive, serial visualization and real-time assessment of tumor cells and neovascularization simultaneously using intravital microscopy and computerized image analysis during the initial stages of tumorigenesis. Erythropoietin or its antagonist proteins were co-injected with tumor cells into window chambers. In vivo growth of cells engineered to stably express a constitutively active erythropoietin receptor EPOR-R129C or the erythropoietin antagonist R103A-EPO were analyzed in window chambers and in the mammary fat pads of athymic nude mice. Co-injection of erythropoietin with tumor cells or expression of EPOR-R129C in tumor cells significantly stimulated tumor neovascularization and growth in window chambers. Co-injection of erythropoietin antagonist proteins (soluble EPOR or anti-EPO antibody) with tumor cells or stable expression of antagonist R103A-EPO protein secreted from tumor cells inhibited angiogenesis and impaired tumor growth. In orthotopic tumor xenograft studies, EPOR-R129C expression significantly promoted tumor growth associated with increased expression of Ki67 proliferation antigen, enhanced microvessel density, decreased tumor hypoxia, and increased phosphorylation of extracellular-regulated kinases ERK1/2. R103A-EPO antagonist expression in mammary carcinoma cells was associated with near-complete disruption of primary tumor formation in the mammary fat pad. CONCLUSIONS/SIGNIFICANCE: These data indicate that erythropoietin is an important angiogenic factor that regulates the induction of tumor cell-induced neovascularization and growth during the initial stages of tumorigenesis. The suppression of tumor angiogenesis and progression by erythropoietin blockade suggests that erythropoietin may constitute a potential target for the therapeutic modulation of angiogenesis in cancer

    Epidermal Transglutaminase (TGase 3) Is Required for Proper Hair Development, but Not the Formation of the Epidermal Barrier

    Get PDF
    Transglutaminases (TGase), a family of cross-linking enzymes present in most cell types, are important in events as diverse as cell-signaling and matrix stabilization. Transglutaminase 1 is crucial in developing the epidermal barrier, however the skin also contains other family members, in particular TGase 3. This isoform is highly expressed in the cornified layer, where it is believed to stabilize the epidermis and its reduction is implicated in psoriasis. To understand the importance of TGase 3 in vivo we have generated and analyzed mice lacking this protein. Surprisingly, these animals display no obvious defect in skin development, no overt changes in barrier function or ability to heal wounds. In contrast, hair lacking TGase 3 is thinner, has major alterations in the cuticle cells and hair protein cross-linking is markedly decreased. Apparently, while TGase 3 is of unique functional importance in hair, in the epidermis loss of TGase 3 can be compensated for by other family members
    corecore