271 research outputs found

    Probing the superconducting pairing symmetry from spin excitations in BiS2_2 based superconductors

    Get PDF
    Starting from a two-orbital model and based on the random phase approximation, spin excitations in the superconducting state of the newly discovered BiS2_2 superconductors with three possible pairing symmetries are studied theoretically. We show that spin response is uniquely determined by the pairing symmetry. Possible spin resonance excitations might occur for the d-wave symmetry at an incommensurate momentum about (0.7Ï€,0.7Ï€)(0.7\pi,0.7\pi). For the p-wave symmetry the transverse spin excitation near (0,0)(0,0) is enhanced. For the s-wave pairing symmetry there is no spin resonance signature. These distinct features may be used for probing or determining the pairing symmetry in this newly discovered compound.Comment: 4 pages, 5 figure

    NLO contributions to B→KK∗B \to K K^* Decays in the pQCD approach

    Full text link
    We calculate the important next-to-leading-order (NLO) contributions to the B→KK∗B \to K K^* decays from the vertex corrections, the quark loops, and the magnetic penguins in the perturbative QCD (pQCD) factorization approach. The pQCD predictions for the CP-averaged branching ratios are Br(B+→K+Kˉ∗0)≈3.2×10−7Br(B^+ \to K^+ \bar{K}^{*0}) \approx 3.2\times 10^{-7}, Br(B+→Kˉ0K∗+)≈2.1×10−7Br(B^+ \to \bar{K}^0 {K}^{*+}) \approx 2.1\times 10^{-7}, Br(B^0/\ov{B}^0 \to K^0\bar{K}^{*0}+\bar{K}^0 K^{*0}) \approx 8.5\times 10^{-7}, Br(B^0/\ov{B}^0 \to K^+K^{*-} + K^-K^{*+}) \approx 1.3\times 10^{-7}, which agree well with both the experimental upper limits and the predictions based on the QCD factorization approach. Furthermore, the CP-violating asymmetries of the considered decay modes are also evaluated. The NLO pQCD predictions for \acp(B^+ \to K^+\bar{K}^{*0}) and \acp(B^+ \to K^{*+}\bar{K}^{0}) are \acp^{dir}(K^+\bar{K}^{*0})\approx -6.9 % and \acp^{dir}(K^{*+}\bar{K}^0)\approx 6.5 %.Comment: 29 pages,8 ps/eps figures, modified figures onl

    Partial wave analysis of J/\psi \to \gamma \phi \phi

    Get PDF
    Using 5.8×107J/ψ5.8 \times 10^7 J/\psi events collected in the BESII detector, the radiative decay J/ψ→γϕϕ→γK+K−KS0KL0J/\psi \to \gamma \phi \phi \to \gamma K^+ K^- K^0_S K^0_L is studied. The ϕϕ\phi\phi invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/c2c^{2}. A partial wave analysis shows that the structure is dominated by a 0−+0^{-+} state (η(2225)\eta(2225)) with a mass of 2.24−0.02+0.03−0.02+0.032.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02} GeV/c2c^{2} and a width of 0.19±0.03−0.04+0.060.19 \pm 0.03^{+0.06}_{-0.04} GeV/c2c^{2}. The product branching fraction is: Br(J/ψ→γη(2225))⋅Br(η(2225)→ϕϕ)=(4.4±0.4±0.8)×10−4Br(J/\psi \to \gamma \eta(2225))\cdot Br(\eta(2225)\to \phi\phi) = (4.4 \pm 0.4 \pm 0.8)\times 10^{-4}.Comment: 11 pages, 4 figures. corrected proof for journa

    Measurements of psi(2S) decays to octet baryon-antibaryon pairs

    Get PDF
    With a sample of 14 million psi(2S) events collected by the BESII detector at the Beijing Electron Positron Collider (BEPC), the decay channels psi(2S)->p p-bar, Lambda Lambda-bar, Sigma0 Sigma0-bar, Xi Xi-bar are measured, and their branching ratios are determined to be (3.36+-0.09+-0.24)*10E-4, (3.39+-0.20+-0.32)*10E-4, (2.35+-0.36+-0.32)*10E-4, (3.03+-0.40+-0.32)*10E-4, respectively. In the decay psi(2S)->p p-bar, the angular distribution parameter alpha is determined to be 0.82+-0.17+-0.04.Comment: 8 pages, 8 figure

    Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays

    Full text link
    By analyzing about 33 pb−1\rm pb^{-1} data sample collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we directly measure the branching fractions for the neutral and charged DD inclusive semimuonic decays to be BF(D0→μ+X)=(6.8±1.5±0.7)BF(D^0 \to \mu^+ X) =(6.8\pm 1.5\pm 0.7)% and BF(D+→μ+X)=(17.6±2.7±1.8)BF(D^+ \to \mu^+ X) =(17.6 \pm 2.7 \pm 1.8)%, and determine the ratio of the two branching fractions to be BF(D+→μ+X)BF(D0→μ+X)=2.59±0.70±0.25\frac{BF(D^+ \to \mu^+ X)}{BF(D^0 \to \mu^+ X)}=2.59\pm 0.70 \pm 0.25

    Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV

    Full text link
    By analyzing the data sets of 17.3 pb−1^{-1} taken at s=3.773\sqrt{s}=3.773 GeV and 6.5 pb−1^{-1} taken at s=3.650\sqrt{s}=3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in e+e−e^+e^- annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay to these final states at 90% C.L.Comment: 8 pages, 5 figur

    Influence of infiltration temperature on the microstructure and oxidation behavior of SiC-ZrC ceramic coating on C/C composites prepared by reactive melt infiltration

    No full text
    SiC–ZrC ceramic coating on C/C composites was prepared by reactive melt infiltration (RMI) using a powder mixture composed of Zr, Si and C as the infiltrator. The phase composition and microstructure of the ceramic coating were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The oxidation resistance of the as-prepared composites was tested at 1550 °C in static air. The results indicate that the infiltration temperature has remarkable effects on the phase composition and microstructure of the ceramic coating, as well as on the oxidation resistance of the composites. The SiC–ZrC coated C/C composites prepared at 2000 °C exhibit an excellent oxidation resistance. They gain weight about 5.9 wt% after oxidation at 1550 °C in static air for 5 h, whereas the SiC–ZrC coated C/C composites prepared at 1800 °C lose weight about 3.2 wt%. As a comparison, SiC coated C/C composites prepared at 2000 °C by RMI show an inferior oxidation resistance. After 5 h oxidation, SiC coated C/C composites are severely damaged and their weight loss reaches up to 44.3 wt%. The outstanding oxidation resistance of the SiC–ZrC coated C/C composites prepared at 2000 °C can be attributed to the rapid formation of a continuous glass-like layer composed of ZrO2, ZrSiO4 and SiO2, which covers the surface of the composites and retards the oxygen diffusion and the attack on the underlying C/C substrate. For SiC coated C/C composites, the large SiC particles formed on the surface of the composites are difficult to oxidize rapidly and so a continuous and dense SiO2 layer cannot be formed in time to significantly hinder fast oxygen diffusion leading to the consequent severe oxidation of the C/C substrate

    First observation of J/\psi and \psi(2S) decaying to n K^0_S\bar\Lambda +c.c

    Get PDF
    The decays of \jpsi and \psip to nKS0Λˉ+c.c.{n}{K^0_S}\bar{\Lambda}+c.c. are observed and measured for the first time, and the perturbative QCD ``12%'' rule is tested, based on 5.8×1075.8 \times 10^7 \jpsi and 1.4×1071.4 \times 10^7 \psip events collected with BESII detector at the Beijing Electron-Positron Collider. No obvious enhancement near nΛˉn\bar{\Lambda} threshold in \jpsi \to {n}{K^0_S}\bar{\Lambda}+c.c. is observed, and the upper limit on the branching ratio of \jpsi \to {K^0_S} X, X \to n \bar \Lambda is determined.Comment: 10 pages, 10 figure

    Measurement of \chi_cJ--> K+K-K+K-

    Full text link
    Using 14M psi(2S) events taken with the BES-II detector, chi_cJ-->K+K-K+K- decays are studied. For the four-kaon final state, the branching fractions are B(chi_c0,1,2 -->K+K-K+K-)=(3.48\pm 0.23\pm 0.47)\times 10^{-3}, (0.70\pm 0.13\pm 0.10)\times 10^{-3}, and (2.17\pm 0.20\pm 0.31)\times 10^{-3}. For the \phi K+K- final state, the branching fractions, which are measured for the first time, are B(chi_c0,1,2-->\phi K+K-)=(1.03\pm 0.22\pm 0.15)\times 10^{-3}, (0.46\pm 0.16\pm 0.06)\times 10^{-3}, and (1.67\pm 0.26\pm 0.24)\times 10^{-4}. For the \phi\phi final state, B(chi_{c0,2}-->\phi\phi)=(0.94\pm 0.21\pm 0.13)\times 10^{-3} and (1.70\pm 0.30\pm 0.25)\times 10^{-3}.Comment: 7 pages, 7 figure

    Study of J\psi decaying into \omega p \bar p

    Full text link
    The decay J/ψ→ωppˉJ/\psi \to \omega p \bar p is studied using a 5.8×1075.8 \times 10^7 J/ψJ/\psi event sample accumulated with the BES II detector at the Beijing electron-positron collider. The decay branching fraction is measured to be B(J/ψ→ωppˉ)=(9.8±0.3±1.4)×10−4B(J/\psi \to \omega p \bar p)=(9.8\pm 0.3\pm 1.4)\times 10^{-4}. No significant enhancement near the ppˉp\bar p mass threshold is observed, and an upper limit of B(J/ψ→ωX(1860))B(X(1860)→ppˉ)B(J/\psi \to \omega X(1860))B(X(1860)\to p\bar p) <1.5×10−5< 1.5 \times 10^{-5} is determined at the 95% confidence level, where X(1860) designates the near-threshold enhancement seen in the ppˉp\bar p mass spectrum in J/ψ→γppˉJ/\psi \to \gamma p \bar p decays.Comment: 5 pages, 4 figure
    • …
    corecore