352 research outputs found

    Edgeworth expansions for errors-in-variables models

    Get PDF
    AbstractEdgeworth expansions for sums of independent but not identically distributed multivariate random vectors are established. The results are applied to get valid Edgeworth expansions for estimates of regression parameters in linear errors-in-variable models. The expansions for studentized versions are also developed. Further, Edgeworth expansions for the corresponding bootstrapped statistics are obtained. Using these expansions, the bootstrap distribution is shown to approximate the sampling distribution of the studentized estimators, better than the classical normal approximation

    Limiting behavior of the eigenvalues of a multivariate F matrix

    Get PDF
    AbstractThe spectral distribution of a central multivariate F matrix is shown to tend to a limit distribution in probability under certain conditions as the number of variables and the degrees of freedom tend to infinity

    Fluctuations of Matrix Entries of Regular Functions of Wigner Matrices

    Full text link
    We study the fluctuations of the matrix entries of regular functions of Wigner random matrices in the limit when the matrix size goes to infinity. In the case of the Gaussian ensembles (GOE and GUE) this problem was considered by A.Lytova and L.Pastur in J. Stat. Phys., v.134, 147-159 (2009). Our results are valid provided the off-diagonal matrix entries have finite fourth moment, the diagonal matrix entries have finite second moment, and the test functions have four continuous derivatives in a neighborhood of the support of the Wigner semicircle law.Comment: minor corrections; the manuscript will appear in the Journal of Statistical Physic

    On determination of the order of an autoregressive model

    Get PDF
    AbstractTo determine the order of an autoregressive model, a new method based on information theoretic criterion is proposed. This method is shown to be strongly consistent and the convergence rate of the probability of wrong determination is established

    Random matrices: Universality of local eigenvalue statistics up to the edge

    Get PDF
    This is a continuation of our earlier paper on the universality of the eigenvalues of Wigner random matrices. The main new results of this paper are an extension of the results in that paper from the bulk of the spectrum up to the edge. In particular, we prove a variant of the universality results of Soshnikov for the largest eigenvalues, assuming moment conditions rather than symmetry conditions. The main new technical observation is that there is a significant bias in the Cauchy interlacing law near the edge of the spectrum which allows one to continue ensuring the delocalization of eigenvectors.Comment: 24 pages, no figures, to appear, Comm. Math. Phys. One new reference adde

    On the distinguishability of random quantum states

    Get PDF
    We develop two analytic lower bounds on the probability of success p of identifying a state picked from a known ensemble of pure states: a bound based on the pairwise inner products of the states, and a bound based on the eigenvalues of their Gram matrix. We use the latter to lower bound the asymptotic distinguishability of ensembles of n random quantum states in d dimensions, where n/d approaches a constant. In particular, for almost all ensembles of n states in n dimensions, p>0.72. An application to distinguishing Boolean functions (the "oracle identification problem") in quantum computation is given.Comment: 20 pages, 2 figures; v2 fixes typos and an error in an appendi

    Circular Law Theorem for Random Markov Matrices

    Get PDF
    Consider an nxn random matrix X with i.i.d. nonnegative entries with bounded density, mean m, and finite positive variance sigma^2. Let M be the nxn random Markov matrix with i.i.d. rows obtained from X by dividing each row of X by its sum. In particular, when X11 follows an exponential law, then M belongs to the Dirichlet Markov Ensemble of random stochastic matrices. Our main result states that with probability one, the counting probability measure of the complex spectrum of n^(1/2)M converges weakly as n tends to infinity to the uniform law on the centered disk of radius sigma/m. The bounded density assumption is purely technical and comes from the way we control the operator norm of the resolvent.Comment: technical update via http://HAL.archives-ouvertes.f

    Structured Random Matrices

    Full text link
    Random matrix theory is a well-developed area of probability theory that has numerous connections with other areas of mathematics and its applications. Much of the literature in this area is concerned with matrices that possess many exact or approximate symmetries, such as matrices with i.i.d. entries, for which precise analytic results and limit theorems are available. Much less well understood are matrices that are endowed with an arbitrary structure, such as sparse Wigner matrices or matrices whose entries possess a given variance pattern. The challenge in investigating such structured random matrices is to understand how the given structure of the matrix is reflected in its spectral properties. This chapter reviews a number of recent results, methods, and open problems in this direction, with a particular emphasis on sharp spectral norm inequalities for Gaussian random matrices.Comment: 46 pages; to appear in IMA Volume "Discrete Structures: Analysis and Applications" (Springer

    Local semicircle law and complete delocalization for Wigner random matrices

    Full text link
    We consider N×NN\times N Hermitian random matrices with independent identical distributed entries. The matrix is normalized so that the average spacing between consecutive eigenvalues is of order 1/N. Under suitable assumptions on the distribution of the single matrix element, we prove that, away from the spectral edges, the density of eigenvalues concentrates around the Wigner semicircle law on energy scales η≫N−1(log⁥N)8\eta \gg N^{-1} (\log N)^8. Up to the logarithmic factor, this is the smallest energy scale for which the semicircle law may be valid. We also prove that for all eigenvalues away from the spectral edges, the ℓ∞\ell^\infty-norm of the corresponding eigenvectors is of order O(N−1/2)O(N^{-1/2}), modulo logarithmic corrections. The upper bound O(N−1/2)O(N^{-1/2}) implies that every eigenvector is completely delocalized, i.e., the maximum size of the components of the eigenvector is of the same order as their average size. In the Appendix, we include a lemma by J. Bourgain which removes one of our assumptions on the distribution of the matrix elements.Comment: 14 pages, LateX file. An appendix by J. Bourgain was added. Final version, to appear in Comm. Math. Phy
    • 

    corecore