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The spectral distribution of a central multivariate F matrix is shown to tend to a 
limit distribution in probability under certain conditions as the number of variables 
and the degrees of freedom tend to infinity. 

1. INTRODUCTION 

Let A, < --- <I, denote the eigenvalues of a random matrix 
2 = (zu) : n x n. Then, the distribution function C(x) defined by 

is known to be the spectral distribution of the matrix 2 where #{ } denotes 
the number of elements of the set { ). Jonsson [2,3] showed that the spectral 
distribution of the Wishart matrix (divided by its degrees of freedom) has a 
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limit distribution as the number of variables and the degrees of freedom both 
tend to infinity such that their ratio tends to a limit. Wachter [4] proved a 
similar but more general result. Yin and Krishnaiah [5] showed that the 
spectral distribution of Z = WT tends to a limit distribution under certain 
conditions when p and m tend to infinity such that their ratio tends to a 
limit. Here W :p x p is a Wishart matrix (divided by its degrees of freedom 
m) and T : p x p is a random matrix distributed independent of W and has a 
limit spectral distribution. 

In this paper, we first prove bounds on the distribution functions of the 
largest and smallest eigenvalues of the Wishart matrix. Then, we prove that 
the spectral distribution of nS, S;’ tends to a limit distribution in probability 
as p, m and n tend to infinity such that (p/m) -+ y and (p/n) --f y’ < i; here 
S, : p x p and S, :p x p are distributed independently as central Wishart 
matrices with m and n degrees of freedom respectively. This is the main 
result of the paper and it is proved by applying a result of Yin and 
Krishnaiah [ 5 1. 

2. PRELIMINARIES 

We need the following results in the sequel. 

LEMMA 2.1. If 0 < r < f , then the unit ball in R p can be covered by balls 
of radius r in such a way that the number of these smaller balls does not 
exceed C exp{(p/2) log(2rre/r2)} where C is a positive constant. 

Proof: First, we cover the unit ball by nonoverlapping p-cubes of side 
length (2r/@). All these cubes can be included in a bigger ball with radius 
1 + 2r. So, the sum of these volumes cannot exceed the volume of the latter 
ball. Thus the nu’mber of these balls cannot exceed V,/V, where V,, is the 
volume of p-ball of radius (1 + 2r) and I’, is the volume of p-cube with side 
(r/\/i;>. But, 

V, = 2rrp”(1 + 2r)P/pT 4 , 
( 1 

v,= - 
( J i p* 

Now, applying Stirling’s formula, we obtain 

(2.1) 

We need the following lemma in the sequel: 
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LEMMA 2.2. For M > 0 and E > 0 

P[xi > nM] < exp{-n(M - log 4)/4} 

P[xi < ne] < C exp 
I 
- 5 log( l/es) 

I 

(2.2) 

(2.3) 

where x2 is distributed as chi-square with n degrees of freedom. 

LEMMA 2.3. If A 2 0 is a p x p matrix, and j is the largest eigenvalue of 
A, then 

Ix/Ax-y’AyI~~;ix-ylIx+yI (2.4) 

for any vectors x and y of order p x 1 where 1x1 denotes Eucledian norm. 
Throughout this paper, the transpose of a matrix B is denoted by B’. 

3. BOUNDS ON THE EXTREME EIGENVALUES OF 
THE WISHART MATRIX 

Let { Yii; i, j = 1,2,...) be a double sequence of independent random 
variables which are distributed normally with mean zero and variance one. 
Also, let Y, denote the p x n matrix ( Yii (i = 1, 2 ,..., p, j = 1, 2 ,..., n). Here 
p =p(n) and th e ratio p/n has a finite limit y > 0 as n tends to infinity. Next, 
let 1, and 2, respectively denote the largest and smallest eigenvalues of 
A, = Y, Yyn. We now establish the following bound on the distribution 
function of 1,. 

THEOREM 3.1. There are positive constants C, D and M, such that 

P(,?, > MJ < C exp(-DMn} (3.1) 

when M > M,, and n = 1, 2,.... 

Proof: Let M, > 0 be such that @ exp(-M/64) < l/12 when 
M>M,. Also, let M,,= max(M,, 64 log 2). Now, let M > M, and 
r =@ exp(-M/64). Then 0 < r < l/2 and r(r + 2) < l/4. We cover the 
unit ball B,(O, 1) in RP with the origin as center by balls of radius r. 
Suppose, these smaller balls are B,(x,, r) ,..,, B&X,, r) with centers x, ,..., x,, 
respectively. By Lemma 2.1, we can choose the covering in such a way that 

q<Cexp i 
4 log(2rre/r2) . 

I 
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Also, 

P[;i, > M] = P[ LEyT&I) Z’AnZ a Ml P ’ 

< 5 P{ 
k=l 

reB cx’yB 
P ’ 

(o 1) z’Ai,z 2 M, 1, G 2W + Pi& > 2W. 
P ’ 

But, if z E B,(x,, r) n B,(O, l), z’A,z > hcf, 1, ,< 2M, then 

x;A,x, > z’A,z - Iz’A,z - x;A,,x,j 

>M-2M)z-x,I)z+x,j 

>M-22Mr(l+ 1 +r)>$ 

by using (2.3). So, 

P(;i,>M)< + P 
k:l 1 

x;A,x, > F 
I 

+ P(i, > 2M). (3.2) 

By a well-known property of the Wishart matrix, we observe that 

P(x;A,x, > M/2) = P 
1 
x; > $ 

i I 
<p xf,> 

nM 

i 2(1 +r)2 . (3.3) 
k k 

Applying Lemma 2.2, we have 

P [xLA,xk>$] <exp (--a (F-log4) ( 

Thus, 

P(;i, > M) - P(;i, > 2M) < q exp j-$ ($-log4) 1 

,<Cexp 
I 

(3.4) 

log 4 
I! 

- 

<Cexp + 
I L 

ylog$$+llogZ 
Ii 

(3.5) 

by using (3.2), (3.4) and Lemma 2.1. 
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Replace M by 2&A4, and add these inequalities together to get the result 
required. We now prove a bound on the distribution function of 4,. 

THEOREM 3.2. Let y < f . Then 

(3.6) 

where C, D and a are positive constants. 

Proof: Let 1 < p < 1/2y, a = 1/2y - /?, y = .s4/3 and K = E’-~. Also, let 
B#i, r) ,..., B,(x,, r) be p-balls with radius r and centers x, ,..., xq respec- 
tively, which cover the unit p-sphere S,(O, 1). In addition, let q satisfy the 
inequality 

q< Cexp /$log$/. 

Such balls exist by Lemma 2.1. We have 

If zEB,(x,,r)nS,(O, l), z’A,,z<s, 1, <K, then 

X;A,x, < z’A,,z + Ix;A,x, - z’A,,zl 

<E+&&k-Z+k+ZI 

< E + K . r(2 + r) < 2~. 

Thus 

P@, < E) ( i P(x;A,x, ( 2&J + P{;i, > K}. 
k=l 

But, 

(3.7) 
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by Lemma 2.2. Therefore 

P@,<e)<Cexp !+logFI exp j-tlog (lil)* 1 tP(;i,>K} 

< c * nyf2 e”‘*(2e)“‘* 
\ 

c ) 
r2 * (1 _ r)” + CCD@ 

< CDJ.? + Cexp{-ns-“D,}, if O<s<eO. 

Herea=+-/?y>O,d=p-l>O.But, 

Dye”” exp{ne-SD,} > 1 

as c is small. So 

P@, < E) < CDngun 

for 0 < E < E,, and for some constant E,. 
Geman [l] showed that 1, tends to (1 + y”*)* a.s. where 

lim,,,,,(p/n) = y and 0 < y < co. 

4. PROOF OF THE MAIN THEOREM 

We now apply the following theorem of Yin and Krishnaiah [5] to prove 
our main theorem. 

THEOREM 4.1 (Yin-Krishnaiah [5]). Let {X,; i= 1, 2 ,..., j= 1, 2 ,...) and 
X, :p x m be as defined in Section 3. Also, let W, = (l/m) X,X:. In 
addition, let Tp be a symmetrie p x p matrix of random variables with 
spectral distribution G,(x). We assume that the following conditions are 
satisfied: 

(1) {X,1 and Tp are independent for each p, 

(2) lim( p/m) = y exists and finite, 

(3) Ix” dG,(x)+ H, exists in L*(P), for k = 1,2,..., and 
C HY;/*~ = too, 

Then the spectral distribution of WpTp, Fp(x), tends to a limit F(x) 
(nonrandom) in probability for each x. 
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We will verify that the conditions of the above theorem in Yin and 
Krishnaiah [S] are satisfied for our case. 

In this section, we prove the following main theorem of our paper: 

THEOREM 4.2. Suppose {Xij, Yk,, i,j, k, I = 1, 2 ,... } are iid, X, I - N(0, l), 
X,,, = (Xlj, i= l,..., p;j= l,..., m), Y, = (Yk,, k = I,..., p; I = I,..., n). Then, the 
spectral distribution of ((l/m) X,X;) ((l/n) Y,, YA)-’ has a nonrandom limit 
distribution (in probability) as p -03, ifp/m+y’,pln-+y<f exist. 

THEOREM 4.3. (l/p) tr Ti + H, in L’(P), as p --t CO, and 

\’ H;k’12k = o3. 
L 

Prooj Let Fn(x) be the spectral distribution of the matrix (l/n) Y, YA = 
T; ‘. By Jonsson’s theorem [2, Theorem 2. I], F,(x) -+ F,(x) where F,,(x) is a 
distribution function with density function 

fy(x) = L/(x - a)@ - 4 
27rxy ’ 

a<x<b, 

= 0, otherwise, 

with a = (1 - \/i)‘, b = (1 + 6~)‘. Since 

1 

i 

m  

-tr Ti= 
P 

x-~ dF,(x), 
0 

it is sufficient to prove 

% 

co 

x-~ dF,(x) + 
0 I 

O” x-~ dF,,(x) in L’(P), 
0 

and 

I 

- II2k 

= +a. 

The latter requirement is easy to see. We have 

1 
a2 

0 
x-‘~ dF,,(x) = ,fb x-2k dFJx) < aeZk. 

(1 

Therefore 
-1/2k m  

I 
> C a=+cx). 

k=l 
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For the first requirement, by Minkowski’s inequality, we have 

x-k dF,(x) - 

ji 

E 

GE’/’ 
0 

x-“dF,(x) /‘+E”’ / 1:x-“d[Fn(x)-F,,(x)l/? 

2 

+ E”2 = I;/2 +I;/2 + p, 

ifO<&<a<b<K.NowweconsiderZ,: 

I 

E 
= x - 2k dP@, < x). 

0 

Integrating by parts, and using Theorem 2.2, we see that 

I,< Ex-2kdP@,<x)<c-2kP&<E)+2kCD” n;yf*, 

na-2k 

< CD”E”‘I-‘~ + kCD” ’ 
na - 2k 

-0 

as n--f co, if we choose ca < l/D. 
For I,, we have 

I;‘2 GE”’ IK-k(F,(K) - Fy(K))12 

+ E”’ IE-~(F,(E) - E;;(E))~~ 

I 1 

2 

+ E”’ k K x-‘-‘(F,,(x) -F,(x)) dx 
E 

=J, +J, +.f,. 

By Jonsson’s theorem, F,(c) -F,,(c) -+ 0 in prob. for any c, and thus J,, J, 
both tend to 0. Also, 

1 

Ii 
J; < k2 x-‘~-~ dxE * (F,(x) -F,,(x))’ dx 

c I t 

=ke-2k-2(K-&). 
1 
.’ E(F,(x) - F;(x))~ dx 
0 

-0 as n-,oo. 

Thus, Theorem 4.3 is proved. Therefore the main theorem is proved. 
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