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Abstract: This is a continuation of our earlier paper (Tao and Vu, http://arxiv.org/abs/
0908.1982v4[math.PR], 2010) on the universality of the eigenvalues of Wigner random
matrices. The main new results of this paper are an extension of the results in Tao and
Vu (http://arxiv.org/abs/0908.1982v4[math.PR], 2010) from the bulk of the spectrum
up to the edge. In particular, we prove a variant of the universality results of Soshni-
kov (Commun Math Phys 207(3):697–733, 1999) for the largest eigenvalues, assuming
moment conditions rather than symmetry conditions. The main new technical observa-
tion is that there is a significant bias in the Cauchy interlacing law near the edge of the
spectrum which allows one to continue ensuring the delocalization of eigenvectors.

1. Introduction

In our recent paper [27], a universality result (the Four Moment Theorem) was established
for the eigenvalue spacings in the bulk of the spectrum of random Hermitian matrices.
(See [6] for an extended discussion of the universality phenomenon, and [27] for further
references on universality results in the context of Wigner Hermitian matrices.)

The main purpose of this paper is to extend this universality result to the edge of the
spectrum as well.

1.1. Universality in the bulk. To recall the Four Moment Theorem, we need some nota-
tion.

Definition 1.1 (Condition C0). A random Hermitian matrix Mn = (ζi j )1≤i, j≤n is said
to obey condition C0 if
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• The ζi j are independent (but not necessarily identically distributed) for 1 ≤ i ≤ j ≤
n. For 1 ≤ i < j ≤ n, they have mean zero and variance 1; for i = j , they have
mean zero and variance c for some fixed c > 0 independent of n.

• (Uniform exponential decay) There exist constants C, C ′ > 0 such that

P(|ζi j | ≥ tC ) ≤ exp(−t) (1)

for all t ≥ C ′ and 1 ≤ i, j ≤ n.

Examples of random Hermitian matrices obeying Condition C0 include the GUE and
GOE ensembles, or the random symmetric Bernoulli ensemble in which each of the ζi j
are equal to ±1 with equal probability 1/2. In GOE one has c = 2, but in the other two
cases one has c = 1. The arguments in the previous paper [27] were largely phrased for
the case c = 1, but it is not difficult to see that the arguments extend without difficulty
to other values of c (the main point being that a modification of the variance of a single
entry of a row vector does not significantly affect the Talagrand concentration inequality,
[27, Lemma 43], or Lemma 2.1 below.).

Given an n × n Hermitian matrix A, we denote its n eigenvalues as

λ1(A) ≤ · · · ≤ λn(A),

and write λ(A) := (λ1(A), . . . , λn(A)). We also let u1(A), . . . , un(A) ∈ C
n be an

orthonormal basis of eigenvectors of A with Aui (A) = λi (A)ui (A); these eigenvectors
ui (A) are only determined up to a complex phase even when the eigenvalues are simple,
but this ambiguity will not cause a difficulty in our results as we will only be interested in
the magnitude |ui (A)∗ X | of various inner products ui (A)∗ X of ui (A) with other vectors
X .

It will be convenient to introduce the following notation for frequent events depending
on n, in increasing order of likelihood:

Definition 1.2 (Frequent events). Let E be an event depending on n.

• E holds asymptotically almost surely if 1 P(E) = 1 − o(1).
• E holds with high probability if P(E) ≥ 1 − O(n−c) for some constant c > 0.
• E holds with overwhelming probability if P(E) ≥ 1−OC (n−C ) for every constant

C > 0 (or equivalently, that P(E) ≥ 1 − exp(−ω(log n))).
• E holds almost surely if P(E) = 1.

Definition 1.3 (Moment matching). We say that two complex random variables ζ and
ζ ′ match to order k if

ERe(ζ )mIm(ζ )l = ERe(ζ ′)mIm(ζ ′)l

for all m, l ≥ 0 such that m + l ≤ k.

The first main result [27] can now be stated as follows:

Theorem 1.4 (Four Moment Theorem) [27, Theorem 15]. There is a small positive con-
stant c0 such that for every 0 < ε < 1 and k ≥ 1 the following holds. Let Mn =
(ζi j )1≤i, j≤n and M ′

n = (ζ ′
i j )1≤i, j≤n be two random matrices satisfying C0. Assume fur-

thermore that for any 1 ≤ i < j ≤ n, ζi j and ζ ′
i j match to order 4 and for any 1 ≤ i ≤ n,

1 See Sect. 1.4 for our conventions on asymptotic notation.
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ζi i and ζ ′
i i match to order 2. Set An := √

nMn and A′
n := √

nM ′
n, and let G : R

k → R

be a smooth function obeying the derivative bounds

|∇ j G(x)| ≤ nc0 (2)

for all 0 ≤ j ≤ 5 and x ∈ R
k . Then for any εn ≤ i1 < i2 · · · < ik ≤ (1 − ε)n, and for n

sufficiently large depending on ε, k (and the constants C, C ′ in Definition 1.2) we have

|E(G(λi1(An), . . . , λik (An))) − E(G(λi1(A′
n), . . . , λik (A′

n)))| ≤ n−c0 . (3)

If ζi j and ζ ′
i j only match to order 3 rather than 4, then there is a positive constant C

independent of c0 such that the conclusion (3) still holds provided that one strengthens
(2) to

|∇ j G(x)| ≤ n−C jc0

for all 0 ≤ j ≤ 5 and x ∈ R
k .

Informally, this theorem asserts that the distribution of any bounded number of eigen-
values in the bulk of the spectrum of a random Hermitian matrix obeying condition C0
depends only on the first four moments of the coefficients.

There is also a useful companion result to Theorem 1.4, which is used both in the
proof of that theorem, and in several of its applications:

Theorem 1.5 (Lower tail estimates) [27, Theorem 17]. Let 0 < ε < 1 be a constant,
and let Mn be a random matrix obeying Condition C0. Set An := √

nMn. Then for
every c0 > 0, and for n sufficiently large depending on ε, c0 and the constants C, C ′ in
Definition 1.1, and for each εn ≤ i ≤ (1 − ε)n, one has λi+1(An) − λi (An) ≥ n−c0

with high probability. In fact, one has

P(λi+1(An) − λi (An) ≤ n−c0) ≤ n−c1

for some c1 > 0 depending on c0 (and independent of ε).

Theorem 1.4 (and to a lesser extent, Theorem 1.5) can be used to extend the range
of applicability for various results on eigenvalue statistics in the bulk for Hermitian
or symmetric matrices, for instance in extending results for special ensembles such as
GUE or GOE (or ensembles obeying some regularity or divisibility conditions) to more
general classes of matrices. See [27,13,10] for some examples of this type of extension.
We also remark that a level repulsion estimate which has a similar spirit to Theorem 1.5
was established in [9, Theorem 3.5], although the latter result establishes repulsion of
eigenvalues in a fixed small interval I , rather than at a fixed index i of the sequence
of eigenvalues, and does not seem to be directly substitutable for Theorem 1.5 in the
arguments of this paper.

The results of Theorem 1.4 and Theorem 1.5 only control eigenvalues λi (An) in the
bulk region εn ≤ i ≤ (1 − ε)n for some fixed ε > 0 (independent of n). The reason for
this restriction was technical, and originated from the use of the following two related
results (which are variants of previous results of Erdős, Schlein, and Yau[7–9]), whose
proof relied on the assumption that one was in the bulk:



552 T. Tao, V. Vu

Theorem 1.6 (Concentration for ESD) [27, Theorem 56]. For any ε, δ > 0 and any
random Hermitian matrix Mn = (ζi j )1≤i, j≤n whose upper-triangular entries are inde-
pendent with mean zero and variance 1, and such that |ζi j | ≤ K almost surely for all i, j

and some 1 ≤ K ≤ n1/2−ε, and any interval I in [−2+ε, 2−ε] of width |I | ≥ K 2 log20 n
n ,

the number of eigenvalues NI of Wn := 1√
n

Mn in I obeys the concentration estimate

|NI − n
∫

I
ρsc(x) dx | 
 δn|I |

with overwhelming probability, where ρsc is the semicircular distribution

ρsc(x) :=
{

1
2π

√
4 − x2, |x | ≤ 2

0, |x | > 2.
(4)

In particular, NI = 	ε(n|I |) with overwhelming probability.

Proposition 1.7 (Delocalization of eigenvectors) [27, Prop. 58]. Let ε, Mn, Wn, ζi j , K
be as in Theorem 1.6. Then for any 1 ≤ i ≤ n with λi (Wn) ∈ [−2 + ε, 2 − ε], if
ui (Wn) denotes a unit eigenvector corresponding to λi (Wn), then with overwhelming

probability each coordinate of ui (Mn) is Oε(
K 2 log20 n

n1/2 ).

In the bulk region [−2 + ε, 2 − ε], the semicircular function ρsc is bounded away
from zero. Thus, Theorem 1.6 ensures that the eigenvalues of Wn in the bulk tend to
have a mean spacing of 	ε(1/n) on the average. Applying the Cauchy interlacing law

λi (Wn) ≤ λi (Wn−1) ≤ λi+1(Wn), (5)

where Wn−1 is an n − 1 × n − 1 minor of Wn , this implies that the bulk eigenvalues
of Wn−1 are within 	ε(1/n) of the corresponding eigenvalues of Wn on the average.
Using linear algebra to express the coordinates of the eigenvector ui (Mn) in terms of Wn
and a minor Wn−1 (see Lemma 4.1 below), and using some concentration of measure
results concerning the projection of a random vector to a subspace (see Lemma 2.1), we
eventually obtain Proposition 1.7.

1.2. Universality up to the edge. The main results of this paper are that the above four
theorems can be extended to the edge of the spectrum (thus effectively sending ε to zero).
Let us now state these results more precisely. Firstly, we have the following extension
of Theorem 1.6:

Theorem 1.8 (Concentration for ESD up to edge). Consider a random Hermitian matrix
Mn = (ζi j )1≤i, j≤n whose upper-triangular entries are independent with mean zero and
variance 1, and such that |ζi j | ≤ K almost surely for all i, j and some K ≥ 1. Let
0 < δ < 1/2 be a quantity which can depend on n, and let I be an interval such that

|I | ≥ K 2 log4 n

nδ10 .

We also make the mild assumption K = o(n1/2δ2). Then the number of eigenvalues NI
of Wn := 1√

n
Mn in I obeys the concentration estimate

|NI − n
∫

I
ρsc(x) dx | 
 δn|I |

with overwhelming probability.
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Remark 1.9. The powers of K , δ and log n here are probably not best possible, but this
will not be relevant for our purposes. In our applications K will be a power of log n, and
δ will be a negative power of log n. (This allows the error term O(δn|I |) in the above
estimate for NI to exceed the main term n

∫
I ρsc(x) dx when one is very near the edge,

but this will not impact our arguments.)

We prove this theorem in Sect. 3, using the same (standard) Stieltjes transform method
that was used to prove Theorem 1.6 in [27] (see also [9]), with a somewhat more careful
analysis. We next use it to obtain the following extension of Proposition 1.7:

Proposition 1.10 (Delocalization of eigenvectors up to the edge). Let Mn be a random
matrix obeying Condition C0. Then with overwhelming probability, every unit eigenvec-
tor ui (Mn) of Mn has coefficients at most n−1/2 logO(1) n, thus

sup
1≤i, j≤n

|ui (Mn)
∗e j | 
 n−1/2 logO(1) n,

where e1, . . . , en is the standard basis.

The deduction of Proposition 1.10 from Theorem 1.8 differs significantly from the
analogous deduction of Proposition 1.7 in Theorem 1.6 in [27]. The main difference
is that in the current case ρsc is no longer bounded away from zero, which causes the
average eigenvalue spacing between λi (Wn) and λi+1(Wn) to be considerably larger
than 1/n. For instance, the gap between the second largest eigenvalue λn−1(Wn) and
the largest eigenvalue λn(Wn) is typically of size n−2/3.

The key new ingredient that helps us to deal with this problem is the following obser-
vation: the Cauchy interlacing law (5), when applied to the eigenvalues of the edge,
is strongly bias. In particular, the gap between λi (Wn−1) and λi (Wn) is significantly
smaller than the gap between λi (Wn−1) and λi+1(Wn). We can show that (with high
probability), the first gap is of order n−1+o(1) while the second can be as large as n−2/3

(and similarly for the gap between λi+1(Wn) and λi (Wn−1) when n/2 ≤ i ≤ n). This
new ingredient will be sufficient to recover Proposition 1.10; see Sect. 4, where the
above proposition is proved.

Using Theorem 1.8 and Proposition 1.10, one can continue the arguments from [27]
to establish the following extensions of Theorem 1.4 and Theorem 1.5:

Theorem 1.11 (Four Moment Theorem up to the edge). There is a small positive con-
stant c0 such that for every k ≥ 1 the following holds. Let Mn = (ζi j )1≤i, j≤n and
M ′

n = (ζ ′
i j )1≤i, j≤n be two random matrices satisfying C0. Assume furthermore that for

any 1 ≤ i < j ≤ n, ζi j and ζ ′
i j match to order 4 and for any 1 ≤ i ≤ n, ζi i and ζ ′

i i match

to order 2. Set An := √
nMn and A′

n := √
nM ′

n, and let G : R
k → R be a smooth

function obeying the derivative bounds (2) for all 0 ≤ j ≤ 5 and x ∈ R
k . Then for any

1 ≤ i1 < i2 · · · < ik ≤ n, and for n sufficiently large depending on k (and the constants
C, C ′ in Definition 1.1) we have (3). If ζi j and ζ ′

i j only match to order 3 rather than 4,
then there is a positive constant C independent of c0 such that the conclusion (3) still
holds provided that one strengthens (2) to

|∇ j G(x)| ≤ n−C jc0 (6)

for all 0 ≤ j ≤ 5 and x ∈ R
k .
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Theorem 1.12 (Lower tail estimates up to the edge). Let Mn be a random matrix obey-
ing Condition C0. Set An := √

nMn. Then for every c0 > 0, and for n sufficiently large
depending on c0 and the constants C, C ′ in Definition 1.1, and for each 1 ≤ i ≤ n, one
has λi+1(An) − λi (An) ≥ n−c0 with high probability, uniformly in i .

The novelty here is that we have no assumption on the indices i j and i . We present
the proof of these theorems in Sects. 5, 6, following the arguments in [27] closely.

1.3. Applications. As Theorems 1.11, 1.12 extend Theorems 1.4, 1.5, all the applica-
tions of the latter theorems in [27] (concerning the bulk of the spectrum) can also be
viewed as applications of these theorems. But because these results extend all the way
to the edge, we can now obtain some results on the edge of the spectrum as well. For
instance, we can prove

Theorem 1.13. Let k be a fixed integer and Mn be a matrix obeying Condition C0, and
suppose that the real and imaginary part of the atom variables have the same covari-
ance matrix as the GUE ensemble (i.e. both components have variance 1/2, and have
covariance 0). Assume furthermore that all third moments of the atom variables vanish.
Set Wn := 1√

n
Mn. Then the joint distribution of the k dimensional random vector

(
(λn(Wn) − 2)n2/3, . . . , (λn−k+1(Wn) − 2)n2/3

)
(7)

has a weak limit as n → ∞, which coincides with that in the GUE case (in particular, the
limit for k = 1 is the GUE Tracy-Widom distribution [28], and for higher k is controlled
by the Airy kernel [14]). The result also holds for the smallest eigenvalues λ1, . . . , λk ,
with the offset −2 replaced by +2.

If the atom variables have the same covariance matrix as the GOE ensemble (i.e. they
are real with variance 1 off the diagonal, and 2 on the diagonal), instead of the GUE
ensemble, then the same conclusion applies but with the GUE distribution replaced of
course by the GOE distribution (see [29] for the k = 1 case).

This result was previously established by Soshnikov [25] (see also [23,24]) in the
case when Mn is a Wigner Hermitian matrix (i.e. the off-diagonal entries are iid, and
the matrix matches GUE to second order at least) with symmetric distribution (which
implies, but is stronger than, matching to third order). For some additional partial results
in the non-symmetric case see [20,21]. The exponential decay condition in Soshnikov’s
result has been lowered to a finite number of moments; see [22,18]. It is reasonable to
conjecture that the exponential decay conditions in this current paper can similarly be
lowered, but we will not pursue this issue here. It also seems plausible that the third
moment matching conditions could be dropped, though this is barely beyond the reach
of the current method2.

Proof. We just prove the claim for the largest k eigenvalues and for GUE, as the claim
for the smallest k and/or GOE is similar.

Set An := √
nMn . It suffices to show that for every smooth function G : R

k → R,
that the expectation

EG((λn(An) − 2n)/n1/3, . . . , (λn−k+1(An) − 2n)/n1/3) (8)

2 Note added in proof. The third moment condition has recently been dropped in [16], by combining the
four moment theorem here with a new proof of universality for the distribution of the largest eigenvalue for
gauss divisible matrices.
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only changes by o(1) when the matrix Mn is replaced with GUE. But this follows from
the final conclusion of Theorem 1.11, thanks to the extra factor n−1/3. �

Remark 1.14. Notice that there is some room to spare in this argument, as the n−1/3 gain
in (8) is far more than is needed for (6). Because of this, one can obtain similar univer-
sality results for suitably normalised eigenvalues λi (An) with i ≤ n1−ε or i ≥ n − n1−ε

for any ε > 0 (where the normalisation factor for λi (An) is now n2/3 min(i, n − i)1/3,
and the offset −2 is replaced by −t , where

∫ t
−2 ρsc(x) dx = i

n ). We omit the details.

Remark 1.15. In analogy with [13], one should be able to drop the third moment con-
dition in Theorem 1.13 if one can control the distribution of the largest (or smallest)
eigenvalues from random matrices obtained from a suitable Ornstein-Uhlenbeck pro-
cess, as in [12].

1.4. Notation. We consider n as an asymptotic parameter tending to infinity. We use
X 
 Y , Y � X , Y = 
(X), or X = O(Y ) to denote the bound X ≤ CY for all
sufficiently large n and for some constant C . Notations such as X 
k Y, X = Ok(Y )

mean that the hidden constant C depend on another constant k. X = o(Y ) or Y = ω(X)

means that X/Y → 0 as n → ∞; the rate of decay here will be allowed to depend on
other parameters. We write X = 	(Y ) for Y 
 X 
 Y .

We view vectors x ∈ C
n as column vectors. The Euclidean norm of a vector x ∈ C

n

is defined as ‖x‖ := (x∗x)1/2.
Eigenvalues are always ordered in increasing order, thus for instance λn(An) is the

largest eigenvalue of a Hermitian matrix An , and λ1(An) is the smallest.

2. General Tools

In this section we record some general tools (proven in [27]) which we will use repeat-
edly in the sequel. We begin with a very useful concentration of measure result that
describes the projection of a random vector to a subspace.

Lemma 2.1 (Projection Lemma). Let X = (ξ1, . . . , ξn) ∈ C
n be a random vector whose

entries are independent with mean zero, variance 1, and are bounded in magnitude by K
almost surely for some K , where K ≥ 10(E|ξ |4 + 1). Let H be a subspace of dimension
d and πH the orthogonal projection onto H. Then

P(|‖πH (X)‖ − √
d| ≥ t) ≤ 10 exp(− t2

10K 2 ).

In particular, one has

‖πH (X)‖ = √
d + O(K log n)

with overwhelming probability.
The same conclusion holds (with 10 replaced by another explicit constant) if one of

the entries ξ j of X is assumed to have variance c instead of 1, for some absolute constant
c > 0.

Proof. See [27, Lem. 40]. (The main tool in the proof is Talagrand’s concentration
inequality.) It is clear from the triangle inequality that the modification of variance in a
single entry does not significantly affect the conclusion except for constants. �
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Next, we record a crude but useful upper bound on the number of eigenvalues in a
short interval.

Lemma 2.2 (Upper bound on ESD). Consider a random Hermitian matrix Mn =
(ζi j )1≤i, j≤n whose upper-triangular entries are independent with mean zero and vari-
ance 1 (with variance c on the diagonal for some absolute constant c > 0), and such
that |ζi j | ≤ K almost surely for all i, j and some K ≥ 1. Set Wn := 1√

n
Mn. Then for

any interval I ⊂ R with |I | ≥ K 2 log2 n
n ,

NI 
 n|I |

with overwhelming probability, where NI is the number of eigenvalues of Wn in I .

Proof. See [27, Prop. 62]. (The main tools in the proof are the Stieltjes transform method,
Lemma 3.3 below, and Lemma 2.1.) Again, the generalisation to variances other than 1
on the diagonal do not cause significant changes to the argument. �


Finally, we recall a Berry-Esséen type theorem:

Theorem 2.3 (Tail bounds for complex random walks). Let 1 ≤ N ≤ n be integers, and
let A = (ai, j )1≤i≤N ;1≤ j≤n be an N × n complex matrix whose N rows are orthonormal
in C

n, and obeying the incompressibility condition

sup
1≤i≤N ;1≤ j≤n

|ai, j | ≤ σ (9)

for some σ > 0. Let ζ1, . . . , ζn be independent complex random variables with mean
zero, variance E|ζ j |2 equal to 1, and obeying E|ζi |3 ≤ C for some C ≥ 1. For each
1 ≤ i ≤ N, let Si be the complex random variable

Si :=
n∑

j=1

ai, jζ j

and let �S be the C
N -valued random variable with coefficients S1, . . . , SN :

• (Upper tail bound on Si ) For t ≥ 1, we have P(|Si | ≥ t) 
 exp(−ct2) + Cσ for
some absolute constant c > 0.

• (Lower tail bound on �S) For any t ≤ √
N, one has P(| �S| ≤ t) 
 O(t/

√
N )�N/4� +

C N 4t−3σ .

The same claim holds if one of the ζi is assumed to have variance c instead of 1 for some
absolute constant c > 0.

Proof. See [27, Th. 41]. Again, the modification of the variance on a single entry can
be easily seen to have no substantial effect on the conclusion. �
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3. Asymptotics for the ESD

In this section we prove Theorem 1.8, using the Stieltjes transform method (see [2] for
a general discussion of this method). We may assume throughout that n is large, since
the claim is vacuous for n small.

It is known by the moment method (see e.g. [2] or [4]) that with overwhelming prob-
ability, all eigenvalues of Wn have magnitude at most 2 + o(1). Because of this, we may
restrict attention to the case when I lies in interval [−3, 3] (say).

We recall the Stieltjes transform sn(z) of a Hermitian matrix Wn , defined for complex
z by the formula

sn(z) := 1

n

n∑
i=1

1

λi (Wn) − z
. (10)

We also introduce the semicircular counterpart

s(z) :=
∫ 2

−2

1

x − z
ρsc(x) dx,

which by a standard contour integral computation can be given explicitly as

s(z) = 1

2
(−z +

√
z2 − 4), (11)

where we use the branch of the square root of z2 − 4 with cut at [−2, 2] which is
asymptotic to z at infinity.

It is well known that one can control the empirical spectral distribution NI via the
Stieltjes transform. We will use the following formalization of this principle:

Lemma 3.1 (Control of Stieltjes transform implies control on ESD). There is a positive
constant C such that the following holds for any Hermitian matrix Wn. Let 1/10 ≥ η ≥
1/n and L , ε, δ > 0. Suppose that one has the bound

|sn(z) − s(z)| ≤ δ (12)

with (uniformly) overwhelming probability for all z with |Re(z)| ≤ L and Im(z) ≥ η.
Then for any interval I in [−L + ε, L − ε] with |I | ≥ max(2η,

η
δ

log 1
δ
), one has

|NI − n
∫

I
ρsc(x) dx | 
ε δn|I |

with overwhelming probability, where NI is the number of eigenvalues of Wn in I .

Proof. See [27, Lem. 60]. �

As a consequence of this lemma (with L = 4 and ε = 1, say), we see that Theorem 1.8

follows from

Theorem 3.2 (Concentration for the Stieltjes transform up to edge). Consider a random
Hermitian matrix Mn = (ζi j )1≤i, j≤n whose upper-triangular entries are independent
with mean zero and variance 1, with variance c on the diagonal for some absolute
constant c > 0, and such that |ζi j | ≤ K almost surely for all i, j and some K ≥ 1.
Set Wn := 1√

n
Mn. Let 0 < δ < 1/2 (which can depend on n), and suppose that
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K = o(n1/2δ2). Then (12) holds with (uniformly) overwhelming probability for all z
with |Re(z)| ≤ 4 and

Im(z) ≥ K 2 log3.5 n

δ8n
.

The remainder of this section is devoted to proving Theorem 3.2. Fix z as in
Theorem 3.2, thus |Re(z)| ≤ 4 and Im(z) = η, where

ηn ≥ K 2 log3.5 n

δ8 . (13)

Our objective is to show (12) with (uniformly) overwhelming probability.
As in previous works (in particular [9,27]), the key is to exploit the fact that when

Imz > 0, s(z) is the unique solution to the equation

s(z) +
1

s(z) + z
= 0 (14)

with Ims(z) > 0; this is immediate from (11).
We now seek a similar relation for sn . Note that Imsn(z) > 0 by (10). We use the

following standard matrix identity (cf. [27, Lem. 39], or [2, Chap. 11]):

Lemma 3.3. We have

sn(z) = 1

n

n∑
k=1

1
1√
n
ζkk − z − Yk

, (15)

where

Yk := a∗
k (Wn,k − z I )−1ak,

Wn,k is the matrix Wn with the kth row and column removed, and ak is the kth row of
Wn with the kth element removed.

Proof. By Schur’s complement, 1
ζkk−z−a∗

k (Wk−z I )−1ak
is the kth diagonal entry of

(W − z I )−1. Taking traces, one obtains the claim. �

Proposition 3.4 (Concentration of Yk). For each 1 ≤ k ≤ n, one has Yk = sn(z)+ o(δ2)

with overwhelming probability.

Proof Fix k, and write z = x +
√−1η.

The entries of ak are independent of each other and of Wn,k , and have mean zero and
variance 1

n . By linearity of expectation we thus have, on conditioning on Wn,k ,

E(Yk |Wn,k) = 1

n
trace(Wn,k − z I )−1 =

(
1 − 1

n

)
sn,k(z),

where

sn,k(z) := 1

n − 1

n−1∑
i=1

1

λi (Wn,k) − z
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is the Stieltjes transform of Wn,k . From the Cauchy interlacing law (5) and (13), we have

sn(z) − (1 − 1

n
)sn,k(z) = O

(
1

n

∫
R

1

|x − z|2 dx

)
= O

(
1

nη

)
= o(δ2).

It follows that

E(Yk |Wn,k) = sn(z) + o(δ2),

and so it will remain to show the concentration estimate

Yk − E(Yk |Wn,k) = o(δ2)

with overwhelming probability.
Rewriting Yk , it suffices to show that

n−1∑
j=1

R j

λ j (Wn,k) − (x +
√−1η)

= o(δ2) (16)

with overwhelming probability, where R j := |u j (Wn,k)
∗ak |2 − 1/n.

Let 1 ≤ i− < i+ ≤ n, then

∑
i−≤ j≤i+

R j = ‖PH ak‖2 − dim(H)

n
,

where H is the space spanned by the u j (Wn,k)
∗ for i− ≤ j ≤ i+. From Lemma 2.1 and

the union bound, we conclude that with overwhelming probability

∣∣∣∣∣∣
∑

i−≤ j≤i+

R j

∣∣∣∣∣∣ 

√

i+ − i−K log n + K 2 log2 n

n
. (17)

By the triangle inequality, this implies that

∑
i−≤ j≤i+

‖PH ak‖2 
 i+ − i−
n

+

√
i+ − i−K log n + K 2 log2 n

n
,

and hence by a further application of the triangle inequality

∑
i−≤ j≤i+

|R j | 
 (i+ − i−) + K 2 log2 n

n
(18)

with overwhelming probability.
The plan is to use (17) and (18) to establish (16). Accordingly, we split the LHS of

(16), into several subsums according to the distance |λ j − x |. Lemma 2.2 provides a
sharp estimate on the number of terms of each subsum which will allow us to obtain a
good upper bound on the absolute value.
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We turn to the details. From (13) we can choose two auxiliary parameters 0 < δ′, α <

1 such that

δ′ = o(δ2);
α log n = o(δ2);
αδ′ηn ≥ K 2 log2 n;

K log n√
αδ′ηn

= o(δ2).

(19)

Indeed, one could set δ′ := δ2 log−0.01 n and α := δ2 log−1.01 n and use (13).
Fix such parameters, and consider the contribution to (16) of the indices j for which

|λ j (Wn) − x | ≤ δ′η.

By Lemma 2.2 and (19), the interval of j for which this occurs has cardinality O(δ′ηn)

(with overwhelming probability). On this interval, the quantity 1
λ j (Wn,k )−(x+

√−1η)
has

magnitude O( 1
η
). Applying (18) (and (19)), we see that the contribution of this case is

thus


 1

η

δ′ηn

n
= o(δ2),

which is acceptable.
Next, we consider the contribution to (16) of those indices j for which

(1 + α)lδ′η < |λ j (Wn) − x | ≤ (1 + α)l+1δ′η

for some integer 0 ≤ l 
 log n/α, and then sum over l. By Lemma 2.2 and (19), the
set of j for which this occurs is contained (with overwhelming probability) in at most
two intervals of cardinality O((1 + α)lαδ′ηn). On each of these intervals, the quantity

1
λ j (Wn,k )−(x+

√−1η)
has magnitude O

(
1

(1+α)lδ′η

)
and fluctuates by O

(
α

(1+α)lδ′η

)
. Apply-

ing (17), (18) (and noting that (1 + α)lαδ′ηn exceeds K 2 log2 n, by (19)) we see that the
contribution of a single l to (16) is at most


 1

(1 + α)lδ′η

√
α(1 + α)lδ′ηnK log n

n
+

α

(1 + α)lδ′η
α(1 + α)lδ′ηn

n
,

which simplifies to


 α(1 + α)−l/2 K log n√
αδ′ηn

+ α2.

Summing over l we obtain a bound of


 K log n√
αδ′ηn

+ α log n,

which is acceptable by (19). �
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We now conclude the proof of Theorem 1.8. By hypothesis,
∣∣∣∣ 1√

n
ζkk

∣∣∣∣ ≤ K/
√

n = o(δ2)

almost surely. Inserting these bounds into (15), we see that with overwhelming proba-
bility

sn(z) +
1

n

n∑
k=1

1

sn(z) + z + o(δ2)
= 0.

By the triangle inequality (and square rooting the o() decay), we can assume that either
the error term o(δ2) is o(δ2|sn(z) + z|), or that |sn(z) + z| is o(1). Suppose the former
holds. Then by Taylor expansion

1

sn(z) + z + o(δ2)
= 1

sn(z) + z
+ o(δ2),

and thus

sn(z) +
1

sn(z) + z
= o(δ2).

If we assume |z| ≤ 10 (say), we conclude that |sn(z)| ≤ 100. Multiplying out by sn(z)+z
and rearranging, we obtain

(
sn(z) +

z

2

)2 = z2 − 4

4
+ o(δ2).

Thus

sn(z) +
z

2
= ±

√
z2 − 4

4
+ o(δ)

(treating the case when z2 − 4 = o(δ2) separately).
To summarise, we have shown (with overwhelming probability) in the region

|z| ≤ 10; |Re(z)| ≤ 4; Im(z) ≥ K 2 log3.5 n

δ8n

that one either has sn(z) = s(z)+o(δ), sn(z) = −z−s(z)+o(1) = s(z)−√
z2 − 4+o(1),

or |sn(z) + z| = o(1). It is not hard to see that the first two cases are disconnected from
the third (for n large enough) in this region, because s(z) = −1

s(z)+z is bounded away

from zero, as is s(z) + z = −1
s(z) . Furthermore, the first and second possibilities are also

disconnected from each other except when z2 − 4 = o(δ2). Also, the second and third
possibilities can only hold for Im(z) = o(1) since sn(z) and z both have positive real
part. A continuity argument thus shows that the first possibility must hold throughout the
region except when z2 − 4 = o(δ2), in which case either the first or second possibility
can hold; but in that region, the first and second possibility are equivalent, and (12)
follows. The proof of Theorem 1.8 is now complete.
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4. Delocalization of Eigenvectors

Without loss of generalization, we can assume that the entries are continuously distrib-
uted. Having established Theorem 1.8, we now use this theorem to establish Proposi-
tion 1.10.

Let Mn obey Condition C0. Then by Markov’s inequality, one has |ζi j | 
 logO(1) n
with overwhelming probability (here and in the sequel we allow implied constants in
the O() notation to depend on the constants C, C ′ in (1)). By conditioning the ζi j to this
event3, we may thus assume that

|ζi j | ≤ K (20)

almost surely for some K = O(logO(1) n).
Fix 1 ≤ i ≤ n; by symmetry we may take i ≥ n/2. By the union bound and another

application of symmetry, it suffices to show that

|ui (Mn)
∗e1| 
 n−1/2 logO(1) n

with overwhelming probability.
To compute ui (Mn)∗e1 we use the following identity from [7] (see also [27, Lem. 38]):

Lemma 4.1 Let

An =
(

a X∗
X An−1

)

be a n × n Hermitian matrix for some a ∈ R and X ∈ C
n−1, and let

(
x
v

)
be a unit

eigenvector of A with eigenvalue λi (A), where x ∈ C and v ∈ C
n−1. Suppose that none

of the eigenvalues of An−1 are equal to λi (A). Then

|x |2 = 1

1 +
∑n−1

j=1(λ j (An−1) − λi (An))−2|u j (An−1)∗ X |2 ,

where u j (An−1) is a unit eigenvector corresponding to the eigenvalue λ j (An−1).

Proof By subtracting λi (A)I from A we may assume λi (A) = 0. The eigenvector
equation then gives

x X + An−1v
′ = 0,

thus

v′ = −x A−1
n−1 X.

Since ‖v′‖2 + |x |2 = 1, we conclude

|x |2(1 + ‖A−1
n−1 X‖2) = 1.

Since ‖A−1
n−1 X‖2 = ∑n−1

j=1(λ j (An−1))
−2|u j (An−1)

∗ X |2, the claim follows. �

3 Strictly speaking, this distorts the mean and variance of ζi j by an exponentially small amount, but one

can easily check that this does not significantly impact any of the arguments in this section.
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Let Mn−1 be the bottom right n − 1 × n − 1 minor of Mn . As we are assuming that
the coefficients of Mn are continuously distributed, we see almost surely that none of the
eigenvalues of Mn−1 are equal to λi (Mn). We may thus apply Lemma 4.1 and conclude
that

|ui (Mn)∗e1|2 = 1

1 +
∑n−1

j=1
|u j (Mn−1)∗ X |2

(λ j (Mn−1)−λi (Mn))2

,

where X is the bottom left n−1×1 vector of Mn (and thus has entries ζ j1 for 1 < j ≤ n).
It thus suffices to show that

n−1∑
j=1

|u j (Mn−1)
∗ X |2

(λ j (Mn−1) − λi (Mn))2 � n log−O(1) n

with overwhelming probability.
It will be convenient to eliminate the exponent 2 in the denominator, as follows.

From Lemma 2.1, one has |u j (Mn−1)
∗ X | 
 logO(1) n with overwhelming probability

for each j (and hence for all j , by the union bound). It thus suffices to show that

n−1∑
j=1

|u j (Mn−1)
∗ X |4

(λ j (Mn−1) − λi (Mn))2 � n log−O(1) n

with overwhelming probability. By the Cauchy-Schwarz inequality, it thus suffices to
show that

∑
j :i−T−≤ j≤i+T+

|u j (Mn−1)
∗ X |2

|λ j (Mn−1) − λi (Mn)| � n1/2 log−O(1) n

with overwhelming probability for some 1 ≤ T−, T+ 
 logO(1) n. It is convenient to
work with the normalized matrix Wn := 1√

n
Mn , thus we need to show

∑
j :i−T−≤ j≤i+T+

|u j (Wn−1)
∗Y |2

|λ j (Wn−1) − λi (Wn)| � log−O(1) n (21)

with overwhelming probability for some 1 ≤ T−, T+ 
 logO(1) n, where Y := 1√
n

X

has entries 1√
n
ζ j1 for 1 < j ≤ n.

There are two cases: the bulk case and the edge case; the former was already treated
in [27], but the latter is new.

4.1. The bulk case. Suppose that n/2 ≤ i < 0.999n. Then from the semicircular law
(or Theorem 1.8) we see that λi (Wn) ∈ [−2 + ε, 2 + ε] with overwhelming probability
for some absolute constant ε > 0. Let A be a large constant to be chosen later. A further
application of Theorem 1.8 then shows that there is an interval I of length logA n/n
centered at λi (Wn) which contains 	(logA n) eigenvalues of Wn . If λ j (Wn), λ j+1(Wn)
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lie in I , then by the Cauchy interlacing property (5), |λ j (Wn−1)−λi (Wn)| 
 logA n/n.
One can thus lower bound the left-hand side of (21) (for suitable values of T ) by

� n log−A n
∑

j :λ j (Wn),λ j+1(Wn)∈I

|u j (Wn−1)
∗Y |2.

One can rewrite this as log−A n‖πH X‖2, where H is the span of the u j (Wn−1) for
λ j (Wn), λ j+1(Wn) ∈ I . The claim then follows from Lemma 2.1 (for A large enough).

4.2. The edge case. We now turn to the more interesting edge case when 0.999n ≤ i ≤
n. Using the semicircular law, we now see that

λi (Wn) ≥ 1.9 (22)

(say) with overwhelming probability.
Next, we can exploit the following identity:

Lemma 4.2 (Interlacing identity) [27, Lem. 37]. If u j (Wn−1)
∗ X is non-zero for every

j , then

n−1∑
j=1

|u j (Wn−1)
∗ X |2

λ j (Wn−1) − λi (Wn)
= 1√

n
ζnn − λi (Wn). (23)

Proof By diagonalising Wn−1 (noting that this does not affect either side of (23)), we
may assume that Wn−1 = diag(λ1(Wn−1), . . . , λn−1(Wn−1)) and u j (Wn−1) = e j for
j = 1, . . . , n−1. One then easily verifies that the characteristic polynomial det(Wn−λI )
of Wn is equal to

n−1∏
j=1

(λ j (Wn−1) − λ)

⎡
⎣

(
1√
n
ζnn − λ

)
−

n−1∑
j=1

|u j (Wn−1)
∗ X |2

λ j (Wn−1) − λ

⎤
⎦

when λ is distinct from λ1(Wn−1), . . . , λn−1(Wn−1). Since u j (Wn−1)
∗ X is non-zero

by hypothesis, we see that this polynomial does not vanish at any of the λ j (Wn−1).
Substituting λi (Wn) for λ, we obtain (23). �


Again, the continuity of the entries of Mn ensure that the hypothesis of Lemma 4.2
is obeyed almost surely. From (20), (22), (23) one has∣∣∣∣∣∣

n−1∑
j=1

|u j (Wn−1)
∗ X |2

λ j (Wn−1) − λi (Wn)

∣∣∣∣∣∣ ≥ 1.9 − o(1)

with overwhelming probability, so to show (21), it will suffice by the triangle inequality
to show that ∣∣∣∣∣∣

∑
j>i+T+ or j<i−T−

|u j (Wn−1)
∗ X |2

λ j (Wn−1) − λi (Wn)

∣∣∣∣∣∣ ≤ 1.8 + o(1) (24)

(say) with overwhelming probability for some T = logO(1) n.
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Let A > 100 be a large constant to be chosen later. By Theorem 1.8, we see (if A is
large enough) that

NI = nαI |I | + O(|I |n log−A/20 n) (25)

with overwhelming probability for any interval I of length |I | = logA n/n, where
αI := 1

|I |
∫

I ρsc(x) dx . For any such interval, we see from Lemma 2.1 (and Cauchy
interlacing (5)) that with overwhelming probability

∑
j :λ j (Wn−1)∈I

|u j (Wn−1)
∗ X |2 = NI

n
+ O

(
logA/2+O(1) n

n

)

and thus by (25) (for A large enough)
∑

j :λ j (Wn−1)∈I

|u j (Wn−1)
∗ X |2 = αI |I | + O(|I | log−A/20) n).

Set dI := dist(λi (Wn),I )
|I | . If dI ≥ log n (say), then

1

λ j (Wn−1) − λi (Wn)
= 1

dI |I | + O

(
1

d2
I |I |

)

for all j in the above sum, thus

∑
j :λ j (Wn−1)∈I

|u j (Wn−1)
∗ X |2

λ j (Wn−1) − λi (Wn)
= αI

dI
+ O

(
log−A/20 n

dI

)
+ O

(
αI

d2
I

)
. (26)

We now partition the real line into intervals I of length logA n/n, and sum (26) over all I

with dI ≥ log n. Bounding αI crudely by O(1), we see that
∑

I O

(
αI
d2

I

)
= O

(
1

log n

)
=

o(1). Similarly, one has

∑
I

O

(
log−A/20 n

dI

)
= O(log−A/20 n log n) = o(1)

if A is large enough. Finally, Riemann integration of the principal value integral

p.v.

∫ 2

−2

ρsc(x)

x − λi (Wn)
dx := lim

ε→0

∫
|x |≤2:|x−λi (Wn)|>ε

ρsc(x)

x − λi (Wn)
dx

shows that

∑
I

αI

dI
= p.v.

∫ 2

−2

ρsc(x)

x − λi (Wn)
dx + o(1).

The operator norm of Wn is 2 + o(1) with overwhelming probability (see e.g. [2,4]),
so |λi (Wn)| ≤ 2 + o(1). Using the formula (11) for the Stieltjes transform, one obtains
from residue calculus that

p.v.

∫ 2

−2

ρsc(x)

x − λi (Wn)
dx = −λi (Wn)/2
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for |λi (Wn)| ≤ 2, with the right-hand side replaced by −λi (Wn)/2 +
√

λi (Wn)2 − 4/2
for |λi (Wn)| > 2. In either event, we have

∣∣∣∣p.v.

∫ 2

−2

ρsc(x)

x − λi (Wn)
dx

∣∣∣∣ ≤ 1 + o(1).

Putting all this together, we see that

∣∣∣∣∣∣
∑

I :dI ≥log n

∑
j :λ j (Wn−1)∈I

|u j (Wn−1)
∗ X |2

λ j (Wn−1) − λi (Wn)

∣∣∣∣∣∣ ≤ 1 + o(1).

The intervals I with dI < log n will contribute at most logA+O(1) n eigenvalues, by
(25) (and Cauchy interlacing (5)). The claim (24) now follows by setting T− and T+
appropriately. The proof of Proposition 1.10 is now complete.

Remark 4.3 From (21) and Lemma 2.1 one sees that

|λi−1(Wn−1) − λi (Wn)| 
 logO(1) n/n

with overwhelming probability for all n/2 ≤ i ≤ n, and similarly one has

|λi (Wn−1) − λi (Wn)| 
 logO(1) n/n

with overwhelming probability for all 1 ≤ i ≤ n/2. On the other hand, according to
the Tracy-Widom law, the gap between λn(Wn) and λn−1(Wn) (or between λ1(Wn) and
λ2(Wn)) can be expected to be as large as n−2/3. Thus we see that there is a significant
bias at the edge in the interlacing law (5), which can ultimately be traced to the imbalance
of “forces” in the interlacing identity (23) at that edge.

5. Lower Bound on Eigenvalue Gap

We now give the proof of Theorem 1.12. Most of the proof will follow closely the proof
of Theorem 1.5 in [27], so we shall focus on the changes needed to that argument. As
such, this section will assume substantial familiarity with the material from [27], and
will cite from it repeatedly (similarly for the next section).

For technical reasons relating to an induction argument, it turns out that one has to
treat the extreme cases i = 1, n separately:

Proposition 5.1 (Extreme cases). Theorem 1.12 is true when i = 1 or i = n.

Proof By symmetry it suffices to do this for i = n. By a limiting argument we may
assume that the entries ζi j of Mn are continuously distributed. From Lemma 4.2 one has
(almost surely) that

n−1∑
j=1

|u j (Wn−1)
∗ X |2

λ j (Wn−1) − λn(Wn)
= 1√

n
ζnn − λn(Wn).
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Recall that λn(Wn) = 2 + o(1) with overwhelming probability; also, 1√
n
ζnn = o(1) with

overwhelming probability. As all the terms in the left-hand side have the same sign, we
conclude that

|un−1(Wn−1)
∗ X |2

|λn−1(Wn−1) − λn(Wn)| 
 1.

From Theorem 2.3 and Proposition 1.10, we have |un−1(Wn−1)
∗ X | ≥ n−c0/10 (say)

with high probability, and so

|λn−1(Wn−1) − λn(Wn)| ≥ n−c0

with high probability. The claim now follows from the Cauchy interlacing property (5).
�

Remark 5.2 In fact, at the edge, one should be able to improve the lower bound on the
eigenvalue gap substantially, from n−c0 to n1/3−c0 , in accordance to the Tracy-Widom
law, but we will not need to do so here.

Now we handle the general case of Theorem 1.12. Fix Mn and c0. We write n0, i0
for i, n, thus 1 ≤ i0 ≤ n0 and our task is to show that

λi0+1(An) − λi0(An0) ≥ n−c0

with high probability. By Proposition 5.1 we may assume 1 < i0 < n0. We may also
assume n0 to be large, as the claim is vacuous otherwise. As in previous sections, we may
truncate so that all coefficients ζi j are of size O(logO(1) n0) (as before, the exponentially
small corrections to the mean and variance of ζi j caused by this are easily controlled),
and approximate so that the distribution is continuous rather than discrete.

For each n0/2 ≤ n ≤ n0, let An be the top left n × n minor of An0 . As in [27,
Sect. 3.4], we introduce the regularized gap

gi,l,n := inf
1≤i−≤i−l<i≤i+≤n

λi+(An) − λi−(An)

min(i+ − i−, logC1 n0)log0.9 n0
, (27)

for all n0/2 ≤ n ≤ n0 and 1 ≤ i − l < i ≤ n, where C1 is a large constant to be chosen
later. It will suffice to show that for each 1 < i0 < n0,

gi0,1,n0 ≤ n−c0

with high probability. By symmetry we may assume that n0/2 ≤ i0 < n0.
As before, we let u1(An), . . . , un(An) be an orthonormal eigenbasis of An associated

to the eigenvectors λ1(An), . . . , λn(An). We also let Xn ∈ C
n be the rightmost column

of An+1 with the bottom coordinate
√

nζn+1,n+1 removed.
We will need two key lemmas. First, we have the following deterministic lemma

(a minor variant of [27, Lem. 47]), showing that a narrow gap can be propagated back-
wards in n unless one of a small number of exceptional events happen:

Lemma 5.3 (Backwards propagation of gap). Suppose that i0 ≤n +1≤n0 and l ≤n/10
is such that

gi0,l,n+1 ≤ δ (28)
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for some 0 < δ ≤ 1 (which can depend on n), and that

λn+1(An+1) − λn(An+1) ≥ δ exp(log0.91 n0). (29)

Then i0 ≤ n. Suppose further that

gi0,l+1,n ≥ 2m gi0,l,n+1 (30)

for some m ≥ 0 with

2m ≤ δ−1/2. (31)

Then one of the following statements hold:

(i) (Macroscopic spectral concentration) There exists 1 ≤ i− < i+ ≤ n + 1 with
i+−i− ≥ logC1/2 n such that |λi+(An+1)−λi−(An+1)| ≤ δ exp(log0.95 n)(i+−i−).

(ii) (Small inner products) There exists 1 ≤ i− ≤ i0 − l < i0 ≤ i+ ≤ n with
i+ − i− ≤ logC1/2 n such that

∑
i−≤ j<i+

|u j (An)∗ Xn|2 ≤ n(i+ − i−)

2m/2 log0.01 n
. (32)

(iii) (Large coefficient) We have

|ζn+1,n+1| ≥ n0.4.

(iv) (Large eigenvalue) For some 1 ≤ i ≤ n + 1 one has

|λi (An+1)| ≥ n exp(− log0.95 n)

δ1/2 .

(v) (Large inner product) There exists 1 ≤ i ≤ n such that

|ui (An)∗ Xn|2 ≥ n exp(− log0.96 n)

δ1/2 .

(vi) (Large row) We have

‖Xn‖2 ≥ n2 exp(− log0.96 n)

δ1/2 .

(vii) (Large inner product near i0) There exists 1 ≤ i ≤ n with |i − i0| ≤ logC1 n such
that

|ui (An)
∗ Xn|2 ≥ 2m/2n log0.8 n.

Proof The proof of this proposition repeats the proof of [27, Lem. 47 in Sect. 6] almost
exactly. Only the following changes have to be made:

• We have the upper bound λi+(An+1)−λi−(An+1) ≤ δ(logC1 n)log0.9 n0 , which together
with (29) forces i+ �= n + 1 and thus i0 ≤ n as required.

• The variable j now lies in the range 1 ≤ j ≤ n rather than εn/10 ≤ j ≤ (1−ε/10)n.
• i−− has to be defined as max(i− − 2k−1, 1) rather than just i− − 2k−1 (and similarly

for i++). �
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Next, we need the following result that asserts that the events (i)-(vii) are rare:

Proposition 5.4 (Bad events are rare). Suppose that n0/2 ≤ n < n0 and l ≤ n/10, and
set δ := n−κ

0 for some sufficiently small fixed κ > 0. Let m ≥ 0 be such that 2m ≤ δ−1/2.
Then:

(a) The events (i), (iii), (iv), (v), (vi) in Lemma 5.3 all fail with high probability.
(b) There is a constant C ′ such that all the coefficients of the eigenvectors u j (An) for

1 ≤ j ≤ n are of magnitude at most n−1/2 logC ′
n with overwhelming probability.

Conditioning An to be a matrix with this property, the events (ii) and (vii) occur
with a conditional probability of at most 2−κm + n−κ .

(c) Furthermore, there is a constant C2 (depending on C ′, κ, C1) such that if l ≥ C2
and An is conditioned as in (b), then (ii) and (vii) in fact occur with a conditional
probability of at most 2−κm log−2C1 n + n−κ .

Proof The proof of this proposition repeats the proof of [27, Prop. 49 in Sect. 7] almost
exactly. Only the following changes have to be made:

• All references to [27, Th. 56] (i.e. Theorem 1.6) need to be replaced with Theorem 1.8.
• The variable j now lies in the range 1 ≤ j ≤ n rather than εn/2 ≤ j ≤ (1 − ε/2)n.

�

Given Lemma 5.3 and Proposition 5.4, the proof of Theorem 1.12 exactly follows

the proof of Theorem 1.5 in [27, Sect. 3.5], with the following minor changes:

• In the definition of the event En , the range εn/2 ≤ j ≤ (1 − ε/2)n needs to be
expanded to 1 ≤ j ≤ n.

• In the definition of the event E0, the events that (29) fail for some n0 − log2C1 n0 ≤
n ≤ n0 have to be included; but these events occur with polynomially small proba-
bility, thanks to Proposition 5.1 and the union bound.

This concludes the proof of Theorem 1.12.

6. The Four Moment Theorem

We now prove Theorem 1.11. As in [27, Sect. 3.3], the proof is based on two key prop-
ositions. The first proposition asserts that one can swap a single coefficient (or more
precisely, two coefficients) of a (deterministic) matrix A as long as A obeys a certain
“good configuration condition”:

Proposition 6.1 (Replacement given a good configuration). There exists a positive con-
stant C1 such that the following holds. Let k ≥ 1 and ε1 > 0, and assume n sufficiently
large depending on these parameters. Let 1 ≤ i1 < · · · < ik ≤ n. For a complex
parameter z, let A(z) be a (deterministic) family of n ×n Hermitian matrices of the form

A(z) = A(0) + zepe∗
q + zeqe∗

p,

where ep, eq are unit vectors. We assume that for every 1 ≤ j ≤ k and every |z| ≤ n1/2+ε1

whose real and imaginary parts are multiples of n−C1 , we have

• (Eigenvalue separation) For any 1 ≤ i ≤ n with |i − i j | ≥ nε1 , we have

|λi (A(z)) − λi j (A(z))| ≥ n−ε1 |i − i j |. (33)
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• (Delocalization at i j ) If Pi j (A(z)) is the orthogonal projection to the eigenspace
associated to λi j (A(z)), then

‖Pi j (A(z))ep‖, ‖Pi j (A(z))eq‖ ≤ n−1/2+ε1 . (34)

• For every α ≥ 0,

‖Pi j ,α(A(z))ep‖, ‖Pi j ,α(A(z))eq‖ ≤ 2α/2n−1/2+ε1 , (35)

whenever Pi j ,α is the orthogonal projection to the eigenspaces corresponding to
eigenvalues λi (A(z)) with 2α ≤ |i − i j | < 2α+1.

We say that A(0), ep, eq are a good configuration for i1, . . . , ik if the above properties
hold. Assuming this good configuration, then we have

E(F(ζ )) = EF(ζ ′) + O(n−(r+1)/2+O(ε1)), (36)

whenever

F(z) := G(λi1(A(z)), . . . , λik (A(z)), Qi1(A(z)), . . . , Qik (A(z))),

and

G = G(λi1, . . . , λik , Qi1 , . . . , Qik )

is a smooth function from R
k × R

k
+ → R that is supported on the region

Qi1 , . . . , Qik ≤ nε1

and obeys the derivative bounds

|∇ j G| ≤ nε1

for all 0 ≤ j ≤ 5, and ζ, ζ ′ are random variables with |ζ |, |ζ ′| ≤ n1/2+ε1 almost surely,
which match to order r for some r = 2, 3, 4.

If G obeys the improved derivative bounds

|∇ j G| ≤ n−C jε1

for 0 ≤ j ≤ 5 and some sufficiently large absolute constant C, then we can strengthen
n−(r+1)/2+O(ε1) in (36) to n−(r+1)/2−ε1 .

Proof See [27, Prop. 43]. �

The second proposition asserts that these good configurations occur very frequently:

Proposition 6.2 (Good configurations occur very frequently). Let ε1 > 0 and C, C1, k ≥
1. Let 1 ≤ i1 < · · · < ik ≤ n, let 1 ≤ p, q ≤ n, let e1, . . . , en be the standard basis of
C

n, and let A(0) = (ζi j )1≤i, j≤n be a random Hermitian matrix with independent upper-
triangular entries and |ζi j | ≤ n1/2 logC n for all 1 ≤ i, j ≤ n, with ζpq = ζqp = 0,
but with ζi j having mean zero and variance 1 for all other i j , except on the diagonal
where the variance is instead c for some absolute constant c > 0, and also being distrib-
uted continuously in the complex plane. Then A(0), ep, eq obey the Good Configuration
Condition in Theorem 6.1 for i1, . . . , ik and with the indicated value of ε1, C1 with
overwhelming probability.
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Proof The proof of this proposition repeats the proof of [27, Prop. 44 in Sect. 5] almost
exactly. Only the following changes have to be made:

• All references to [27, Th. 56] (i.e. Theorem 1.6) need to be replaced with Theorem 1.8.
• All references to [27, Prop. 58] (i.e. Proposition 1.7) need to be replaced with Prop-

osition 1.10.
• The edge regions in which λi (A(z)) do not fall inside the bulk region [(−2 + ε′)n,

(2−ε′)n] no longer need to be treated separately, thus simplifying the last paragraph
of the proof somewhat. �

Given these two propositions, the proof of Theorem 1.11 repeats the proof of

[27, Th. 15 in Sect. 3.3] almost exactly. Only the following changes have to be made:

• All references to [27, Prop. 44] need to be replaced with Proposition 6.2.

The proof of Theorem 1.11 is now complete.
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