
JOURNAL OF MULTIVARIATE ANALYSIS 27, 40-52 (1988) 

On Determination of 
the Order of an Autoregressive Model 
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To determine the order of an autoregressive model, a new method based on 
information theoretic criterion is proposed. This method is shown to be strongly 
consistent and the convergence rate of the probability of wrong determination is 
established. 8 1988 Academic Press, Inc. 

1. INTRODUCTION 

Consider an autoregressive (AR) model of order p (p 2 1, unknown) 
generated by a purely random process e(n) given by 

(1.1) 

Assume that {e(n)} is a sequence of i.i.d. random variables with Ee( 1) = 0, 
Ee2( 1) = e2 and 0 < Var(e’( 1)) < 00. Suppose the coefficients in the model 
a(O), a( 1 ), . . . . a(p) satisfy 

g(z)= f a(j)z’#O for (zl < 1. (1.2) 
j=O 

In time series analysis, AR models play an important role. An interesting 
problem in the analysis of AR models is the determination of the order p of 
the model. There is a considerable amount of research work done on this 
topic. To name a few, the reader is referred to Akaike [l], Hannan [3], 
Hannan and Quinn [4], and Shibata [6]. 
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Let X(l), X(2), . . . . X(N) denote a random sample drawn from an AR 
model of order p. Assume that the order p is known a priori to be 
p <Kc 00. Using Yule-Walker equations and a recursive computing 
procedure, Hannan and Quinn [4] obtained an estimate 8; of 0’. To 
estimate p, the following criterion based on C$ is proposed, 

q(p) = log S; + 2p CN - ’ log log N, (1.3) 

where C> 1 is a constant. An estimate fi of p is chosen as that one which 
minimises e(p). Under weaker conditions than mentioned above, strong 
consistency of b is obtained. 

In this article a new criterion to estimate the order of the AR model is 
proposed. Strong consistency as well as the convergence rate of the 
estimate d is established. 

The paper is organized as follows. In Section 2, a new method to deter- 
mine the order AR model is described. 
of P{ ~5 # p> is derived. Some general 
consistency of a, are made in Section 4. 

In Section 3, convergence rates 
remarks, including the strong 

2. DETERMINATION OF THE ORDERP 

Let X( 1 ), X(2), . . . . X(N) be a random sample from an AR series. Define 

Lp(ap)= $ ( X(n)+ 2 a(i)X(n-i) 
2 

, 
n=p+l i= 1 ) 

(2.1) 

where a, = (a(l), . . . . a(p))‘. The true order p of the model and the true 
regression coefficients a(l), . . . . a(p) will be denoted as po, ao( l), . . . . ao(po), 
respectively. 

For each p <K choose hp = (a(l), . . . . d(p))’ such that 

(2.2) 

Since L, is a quadratic form of ap, it is easy to compute tip and Lp(dip). 
Define 

where constants C, will be chosen suitably. Then any jl minimizing 

cw)=~~~#(P) (2.4) 

will be taken as the estimate of the order p of the AR series. 
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Remark 2.1. In fact, (l/N) LJB,,) is an estimate of cr2, which is slightly 
different from that used by Hannan and Quinn [4]. When N is not very 
large, (l/(N- p)) Lp(oip) is a better estimate of cr2 as compared to 
(l/N) Lp(oip). Since we are interested in the large sample properties, there is 
no harm in using (l/N) L,(&,) as an estimate of rr*. 

Define 

4,G. n=; f J-n--iXn-,’ i, j = 0, 1, 2, . . . . p. 
n=p+l 

Qp =(4p(i j))i,j=1,2 ,_._, p (2.5) 

Bp = (Bp(O, 11, .a-, Bp(O, P))‘. 

By differentiating L,(B,), we get 

&,a, = -p, 

or, equivalently, 

ap = -Q,’ fj, (2.6) 

provided &, is nonsingular. In the proof of our main result, it is shown 
that with probability one, for large N, 0, is nonsingular. Hence we can 
use (2.6). 

Using the above notation, the main theorems are stated below. Proofs 
are given in the next section. 

THEOREM 2.1. Suppose 

Eexp(te(l)2} <cc for some t > 0, (2.7) 

and choose C, such that 

C,/N+O, CN -+ co. WI 

Then 

P(BZpo)~C,exp{-C,C,}, 

where C,, C2 are two positive constants independent of N. 

THEOREM 2.2. Suppose (2.8) holds and 

E Je(1)12’< co, for some t > 2. 

Then 

(2.9) 

(2.10) 

P($#po)<C1/(N’/2-1C$2)+ C2e-C3CN, 

where C,, C2, C3 are positive constants independent of N. 

(2.11) 
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3. PROOF OF THE THEOREMS 

LEMMA 3.1. Let y,, . . . . y, be independent random variables with Eyi = 0 
and E 1 y,. 1’ < co, i = 1, . . . . n, for some t Z 2. Denote 

S, = i Yi, Bi = f- Varty,), A,,, 
i= 1 i= 1 

=if,Wr. 

Then for any a > 0, 

P{S, >a} <C,“)A,,aP’+exp{ -Cj*)a*/B~}, 

where 

Ci’)=(l +2/t)’ and CJ2)=2(t+2)-*e-‘. 

Proof: Refer to Corollary 4 of Fuk and Nagaev [2]. 

Let aPO = (aO( 1 ), . . . . a,(~,,)) and 0’ be the true parameters of the model. 
Let 

Y(i-j)=E(X(n-i)X(n-j)), 

rp=((r(i-A))i,j=~ ,__., .,r,=(Y(l),...,y(P)),P~K. 

Suppose p 2 pO, then from 

iFo adi) x(n - 9 = e(n), 

it follows that 

(3.1) 

i~~a.(i)Y(i-j)=6aju2, j=Q l,L...,p, (3.2) 

where 6,,j is Kronecker’s delta. Thus, if we take a,* = (aO( l), . . . . a,(~,), 
0 , . . . . 0)‘, then up = a,* is a unique solution of the equation 

rpup = -yp. (3.3) 

It is well known that, under the conditions (1.1) and (1.2), for 0 6 p < K, 

lim $, = r, a.s., 
N-CO 

lim S, = yP a.s. 
N+CC 

and 

(3.4) 

lim 8,z -r;’ yP P a,* = (a*(l), . . . . a*(p))‘. (3.5) 
N-C9 

683/27/l-4 
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Note that for p0 < p < K, 

a,* = (Q(l), . . . . %(P,), 0, . . . . 01’9 

and that 

(3.6) 

lim 6; g y(O) - a,*’ rP up* = 
{ 

a*2 > a’, if P<P~, 
(3.7) N-co y(O) - abo r, up0 = a2, if p 2po. 

It is easily seen that, 

X(n)+ f 
2 

a(i)X(n-i) 
i= 1 

(3.8) 

First we establish the following proposition which will be used to prove 
our main theorems. 

PROPOSITION 3.1. Under conditions ( 1.1 ), (1.2), and (2.8), there exists a 
constant E > 0 such that for large N, 

~{BzPo)e,+~2+~3+&> 

where 

P,=fP 
i= 1 

~~=~+le(n)X(n-i)l>~~~} 
P3 =2KP{le(O)l >~a} 

and 

P, = 2KP{ IX(O)1 > E &I. 

Proof: Denote 

(3.9) 

AI(&)={IBK(i,j)-~(i-j)l~~JCN/N forall i,j<K} 

AZ(&)= ; 
ii 

n=g+,e(n)X(n-i)l<.sJm forall l<i<K} 

AJE)= {le(n)( <~fi~ forall n<2K} 

A,(E)= {IX(n)1 <c& forall n<2K}. 
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For p < p,,, since 6;: as a function of d,(i, j)‘s and X(n) X(n - I), is 
continuously differentiable, we have 

8p;. 2 6; _ 1 /b& 

-C i f Mx(i,i)-s(i,i)l+~ ff x’(n)}. (3.10) 
i,j=O II=1 

Hereafter, C denotes a constant independent of IV, but may take a different 
value at each appearance even in the same expression. 

From (3.7), noting (3.10), there exists E >O such that if AI(s) n&(s) 
holds then for any p < p. and large ZV, 

log(8p;J 2 log(8& _ 1 /a;) 

> log(a*2/a2) - CE JcNiiy > (p. - p) CN/N. (3.11) 

Now assume that p. < p < K. Put doi, = t?,(i) - a*(i), da, = 8, -a:. By 
(2.2) and (3.8) 

o~cT;-~;o~8:,-8;o 

2’ 

2 

N 
X(n)+ i OiK(i)X(n-i) 

i= 1 > 

-_ 
’ f+, (x(n)+,!, ~o(i)x(n_i))2 N 

1 N 2 

=- 
N =( 

e(n)+ f doiK(i) x(n-i) 
n=K+I i=l 

-;.=g+, m2 

> -f f e(n)‘- $‘&,l$, 
“Cl 

(3.12) 

where 0, is defined - in (2.5) and $ = (I+&,, . . . . 1,6~)‘, I,%~= 
(l/WZ’=K+l e(n) X(n - j), j = 1,2, . . . . K. 

From this, one can see that, there exists E >O such that for large N, if 
A I(~) n AZ(~) n A3(&) holds then for any p. c p GK, 

62 -62 
e CN 

82 
P 

<2N 
(3.13) 
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which in turn implies that for any p0 <p 6 K, 

10g(~;/~;o) > - C,/N> -(p - po) C,/N. (3.14) 

From (3.11) and (3.14), Proposition 3.1 follows. 

Proof of Theorem 2.1. Hereafter, C is a positive constant independent 
of N which can be assigned as large as you wish, but may take a different 
value at each appearance. To prove Theorem 2.1, it is enough to show that 

P,<Cexp{-CC,}, r7=1,2,3,4, (3.15) 

where P,‘s are defined in (3.9). It is easy to see that (3.15) is true for 
q = 3, 4 using (2.7). By (2.4), 

X(n)= f aje(n-j), 1aj1 <Mp’, j=o, 1, 2, . ..) (3.16) 
j=O 

where p E (0, 1) and M > 0 are constants. In order to prove (3.15) for 
‘I= 1,2, it is enough to show that for any E > 0, 

P ; $ X(n)X(n-1)-y(l) >,,/m 
It=1 

< Cexp{ -CC,}, I=O, 1,2, . . . . K, 

and 

f f e(.)X(n-I)I>&~~} 
ll=l 

<Cexp{-CC,}, l=l,2 ,..., K. 

By (3.16), y(l)=~*Cj”=,+a,+j~ and 

(3.17) 

(3.18) 

+ C a,aj 
(i,j)i#/+ j  

Xi 2 e(n-i)e(n-j-l). 
n=l 

(3.19) 
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Fix I< K. Take p1 E (p, 1) and set 

WEI) = $, e(t~-i)~-o’l -~(p,/p)~~-‘~, ,,I’,- 

for i=l, I+ 1, . . . 
I 

D(EI) = 
iI 

in$, e(n-i)e(n- j-f)1 <(P~/P)‘+‘E~ g”% 

foranyi#I+j,i,j=O, 1,2 ,... . 

Take .zl < EM-~(~ --pl)‘. If B(E~) n D(E,) occurs, using (3.19) we get 

GM2 f p2’-’ El ,Tc,/N hlP)2i-’ 
i=l 

+ M2 1 pi+&, ,/m (p,/p)“j 
(i.j):i+l+j 

Thus, taking I=p,/p( > 1) and .52 = (p,/p)-‘s, we get 

+cp 
if i ii $f, e(.)e(.- j+i)l bAl’+‘~,dm}. (3.20) 

Setting f(t) = Eexp(r(e(i)2 -a’)}, T E (0, t), we have f(s) = 1 + f’(O)r + 
ff”(z,)~~, where r1 E (0,~). Hence 

f(t)< 1 +Cr2,<exp(Cz2). (3.21) 
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Thus, 
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P ; 2 (e(+02)B1.‘i~,JzJx 
i n= I 

<exp(-d2’&, &) f(t)” 

< exp{ --d2’~2 E + Ct*N). 

Taking T = 6 J-N Azi, where 6 > 0 is small, one can see that 

< exp( - CA4’C,} 6 CAP2’ exp( - CC,). 

In the same way, 

P ; f (+~)~-a~) 6 -/i2’E2 &j%} 

i n=l 

< Cl ~” exp( - CC,). 

In a similar fashion it follows that if z E (0, t) 

E exp(re(0) e(i - j)) G exp(Cz2). 

For i > j, by (3.25), 

P 2 e(n)e(n+i-j)gIIi+ic2 NC, 
n=l 0 

i-j I 
<CP c e(n)e(n+i-j) 

I??=0 i n4N,ncm(mod(i-j+l)) 

> &i+J $q 

<(i-j+ 1)exp 

Taking z = 6 dm Ai+ j, where 6 >O is small enough to get 

f e(n)e(n+i-j)>,Ai+jE2 
n=l 

i 

1 
<C(i+j)exp -Cp 

i-j+ 1 
Ai+ jc 

N 
I 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

&Cexp{ -CC,}A-‘-j. (3.27) 
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Similarly, 

P f e(n)e(n+i-j)g --A’+& 
n=l 

<Cexp{-CC,}APiPi. (3.28) 

Note that (3.27), (3.28) hold for i-c j. Thus, by (3.20), (3.23) (3.24) (3.27) 
and (3.28) 

$ f X(n)X(n-1)-y(f) a~,/*} 
n=l 

<2C 2 P2’exp(-CC,)+2Cexp(-CC,) f A-‘-j 
i=O i,j=O 

d C exp( - CCN), (3.29) 

which is (3.17). The proof of (3.18) is similar. That completes the proof of 
Theorem 2.1. 

Proof of Theorem 2.2. The line of proof is similar to that of 
Theorem 2.1. Here Lemma 3.1 is used. For example, in order to prove 

P 
il 

h f X(n)2-y(0) >cJEJY 
ll=l 1 

< CN-@+l (CN)-“2 + C exp( - CCN), 

we use y(O) = cr2 c,co u,’ and 

+ 1 uiujf f e(n-i) e(n-j). 
i#j n=l 

Take p1 E (p, 1) and set 

B(E,)= i f e(n-j)2-02 -c(~~/p)~j 
iI n=l 

xsIdcNforj=0,1,2 ,... , 

D(E1)= 
ii 

i f e(n-i)e(n- j) <(~~/p)~+j 
n=l 

(3.30) 

(3.31) 

xc1 -for any i# j, i, j=O, 1, 2, . ..I. 
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As before, by taking .sI < EM P2( 1 - p, )2, we get, when B(fz,)n D(E,) occurs 

Thus, with I= p,/p ( > 1 ), we have 

f f X(n)‘-y(0) >EJ~ 
n=l 

By Lemma 3.1, 

j%pils, !c (e(n)2 -a’) > /I*‘&, JEJZ I 
~(1 +2/t)’ f NE(e(1)2-a21’&;‘~~2”(NC,)~“2 

j=O 

+ f exp{ -2(t + 2)-2 eP’sZ14iNC,/(N Var e(1)2)} 
j=O 

<c f pjN-‘/2+~c~~/2+c f A-jexp(-CC,) 
j=O j=O 

dCN- *I2 + lC,‘12 + C exp( - CC,). (3.33) 

For the last term of the right-hand side of (3.32), we can obtain the same 
bound. The proof of the rest is similar to that Theorem 2.1. This completes 
the proof of the theorem. 

4. SOME REMARKS 

From Theorem 2.1 and Theorem 2.2, it is easily seen that, under the 
restriction C, = o(N), the larger the magnitude of CN, the better the detec- 
tion is in the large sample cases. By the same way, if (l.l), (1.2), and (2.8) 
hold then the detection is weakly consistent. 

Now we point out that, if (1.1 ), ( 1.2) hold and 

lim C,/N=O and lim C,/log log N = oc), (4.1) 
N-cc N-cc 
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then p determined by (2.4) is a strongly consistent estimate of p,,. In fact, if 
p < po, then by (2.8), (3.7) and lim,, m C,/N = 0, 

lim 
N4cc 

[4(p) - &p,)l/N 2 log(a*2/a2) > 0. 

It follows that, with probability one for N large, 

&PO) < 4(P), for p<po. (4.2) 

Now we assume p. < p < K. Under the conditions (1.1) and (1.2), by the 
law of the iterated logarithm, 

~~K(i,j)-p(i-j)~=O(J~) a.s., 

; i e(n)X(n-i) = 
n=K+l 

1 0 (JT) as. 

for i, j=O, 1, . . . . K. Thus, by (3.12) 

By (3.7), (3.12), and lim,,, C,/log log N = co, with probability one for 
large N, 

4(p) - &(Po) 2 Nlog W/t,, + (P - PoIC, 

= N log{ 1 + (8; - 8;,)/8;,} + (p - PO) C, 

= O(log log N) + (p - po) C, > 0, p,, < p d K. (4.4) 

From (4.2) and (4.4), it follows that with probability one for N large, 

B=Po. (4.5) 

This shows strong consistency of a. 
Note that for strong consistency of fi, the last condition of (4.1) can be 

weakened as 

C, > 2C log log N with C> 1. (4.6) 

But this needs more accurate calculations. 
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