329 research outputs found

    Speciation without chromatography: Part I. Determination of tributyltin in aqueous samples by chloride generation, headspace solid-phase microextraction and inductively coupled plasma time of flight mass spectrometry

    Get PDF
    An analytical procedure was developed for the determination of tributyltin in aqueous samples. The relatively high volatility of the organometal halide species confers suitability for their headspace sampling from the vapour phase above natural waters or leached solid samples. Tributyltin was collected from the sample headspace above various chloride-containing matrices, including HCl, sodium chloride solution and sea-water, by passive sampling using a polydimethylsiloxane/divinylbenzene (PDMS/DVB)-coated solid-phase microextraction (SPME) fiber. Inductively coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) was used for detection following thermal desorption of analytes from the fiber. A detection limit of 5.8 pg ml–1(as tin) was realized in aqueous samples. Method validation was achieved using NRCC PACS-2 (Sediment) certified reference material, for which reasonable agreement between certified and measured values for tributyltin content was obtained

    INVESTIGATION INTO THE STRUCTURES OF NITRITE AND NITRATE IONS

    Get PDF

    Tail loss and anomaly in Zootoca vivipara and Lacerta agilis in Hungary

    Get PDF
    An article concerned with tail’s morphological anomaly thatwas founded between L. agilis from different regions of Hungary. No anomalies in Z. vivipara sampled were found.Статья посвящена морфологической аномалии хвоста, обнаруженной среди выборок L. agilis из разных регионов Венгрии. Ни одной аномалии среди выборок Z. vivipara не отмечено.This study was supported by the Hungarian National Research Fund (OTKA-NKTH CNK 80140). We thank Zsuzsanna Horvàth, Timea Mechura, Monika Szalai, Sandor Kethelyi-Nagy, Andras Mate, Mihaly Toth, Balazs Velekei for their participation in the fieldwork, Simon Izing and Sandor Tacsi for X-raying and explaining the veterinary background of the phenomenon discussed above

    Electrostatic Patch Effect in Cylindrical Geometry. III. Torques

    Full text link
    We continue to study the effect of uneven voltage distribution on two close cylindrical conductors with parallel axes started in our papers [1] and [2], now to find the electrostatic torques. We calculate the electrostatic potential and energy to lowest order in the gap to cylinder radius ratio for an arbitrary relative rotation of the cylinders about their symmetry axis. By energy conservation, the axial torque, independent of the uniform voltage difference, is found as a derivative of the energy in the rotation angle. We also derive both the axial and slanting torques by the surface integration method: the torque vector is the integral over the cylinder surface of the cross product of the electrostatic force on a surface element and its position vector. The slanting torque consists of two parts: one coming from the interaction between the patch and the uniform voltages, and the other due to the patch interaction. General properties of the torques are described. A convenient model of a localized patch suggested in [2] is used to calculate the torques explicitly in terms of elementary functions. Based on this, we analyze in detail patch interaction for one pair of patches, namely, the torque dependence on the patch parameters (width and strength) and their mutual positions. The effect of the axial torque is then studied for the experimental conditions of the STEP mission.Comment: 28 pages, 6 Figures. Submitted to Classical Quantum Gravit

    Density Driven Diffusion

    Full text link
    In this work we derive a novel density driven diffusion scheme for image enhancement. Our approach, called D3, is a semi-local method that uses an initial structure-preserving oversegmentation step of the input image.  Because of this, each segment will approximately conform to a homogeneous region in the image, allowing us to easily estimate parameters of the underlying stochastic process thus achieving adaptive non-linear filtering. Our method is capable of producing competitive results when compared to state-of-the-art methods such as non-local means, BM3D and tensor driven diffusion on both color and grayscale images.VIDIGARNICSBILDLA

    Space-based research in fundamental physics and quantum technologies

    Full text link
    Space-based experiments today can uniquely address important questions related to the fundamental laws of Nature. In particular, high-accuracy physics experiments in space can test relativistic gravity and probe the physics beyond the Standard Model; they can perform direct detection of gravitational waves and are naturally suited for precision investigations in cosmology and astroparticle physics. In addition, atomic physics has recently shown substantial progress in the development of optical clocks and atom interferometers. If placed in space, these instruments could turn into powerful high-resolution quantum sensors greatly benefiting fundamental physics. We discuss the current status of space-based research in fundamental physics, its discovery potential, and its importance for modern science. We offer a set of recommendations to be considered by the upcoming National Academy of Sciences' Decadal Survey in Astronomy and Astrophysics. In our opinion, the Decadal Survey should include space-based research in fundamental physics as one of its focus areas. We recommend establishing an Astronomy and Astrophysics Advisory Committee's interagency ``Fundamental Physics Task Force'' to assess the status of both ground- and space-based efforts in the field, to identify the most important objectives, and to suggest the best ways to organize the work of several federal agencies involved. We also recommend establishing a new NASA-led interagency program in fundamental physics that will consolidate new technologies, prepare key instruments for future space missions, and build a strong scientific and engineering community. Our goal is to expand NASA's science objectives in space by including ``laboratory research in fundamental physics'' as an element in agency's ongoing space research efforts.Comment: a white paper, revtex, 27 pages, updated bibliograph

    LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physical maps are the substrate of genome sequencing and map-based cloning and their construction relies on the accurate assembly of BAC clones into large contigs that are then anchored to genetic maps with molecular markers. High Information Content Fingerprinting has become the method of choice for large and repetitive genomes such as those of maize, barley, and wheat. However, the high level of repeated DNA present in these genomes requires the application of very stringent criteria to ensure a reliable assembly with the FingerPrinted Contig (FPC) software, which often results in short contig lengths (of 3-5 clones before merging) as well as an unreliable assembly in some difficult regions. Difficulties can originate from a non-linear topological structure of clone overlaps, low power of clone ordering algorithms, and the absence of tools to identify sources of gaps in Minimal Tiling Paths (MTPs).</p> <p>Results</p> <p>To address these problems, we propose a novel approach that: (i) reduces the rate of false connections and Q-clones by using a new cutoff calculation method; (ii) obtains reliable clusters robust to the exclusion of single clone or clone overlap; (iii) explores the topological contig structure by considering contigs as networks of clones connected by significant overlaps; (iv) performs iterative clone clustering combined with ordering and order verification using re-sampling methods; and (v) uses global optimization methods for clone ordering and Band Map construction. The elements of this new analytical framework called Linear Topological Contig (LTC) were applied on datasets used previously for the construction of the physical map of wheat chromosome 3B with FPC. The performance of LTC vs. FPC was compared also on the simulated BAC libraries based on the known genome sequences for chromosome 1 of rice and chromosome 1 of maize.</p> <p>Conclusions</p> <p>The results show that compared to other methods, LTC enables the construction of highly reliable and longer contigs (5-12 clones before merging), the detection of "weak" connections in contigs and their "repair", and the elongation of contigs obtained by other assembly methods.</p
    corecore