32 research outputs found

    Depression of glutamate and GABA release by presynaptic GABAB receptors in the entorhinal cortex in normal and chronically epileptic rats

    Get PDF
    Presynaptic GABAB receptors (GABABR) control glutamate and GABA release at many synapses in the nervous system. In the present study we used whole-cell patch-clamp recordings of spontaneous excitatory and inhibitory synaptic currents in the presence of TTX to monitor glutamate and GABA release from synapses in layer II and V of the rat entorhinal cortex (EC)in vitro. In both layers the release of both transmitters was reduced by application of GABABR agonists. Quantitatively, the depression of GABA release in layer II and layer V, and of glutamate release in layer V was similar, but glutamate release in layer II was depressed to a greater extent. The data suggest that the same GABABR may be present on both GABA and glutamate terminals in the EC, but that the heteroreceptor may show a greater level of expression in layer II. Studies with GABABR antagonists suggested that neither the auto- nor the heteroreceptor was consistently tonically activated by ambient GABA in the presence of TTX. Studies in EC slices from rats made chronically epileptic using a pilocarpine model of temporal lobe epilepsy revealed a reduced effectiveness of both auto- and heteroreceptor function in both layers. This could suggest that enhanced glutamate and GABA release in the EC may be associated with the development of the epileptic condition. Copyright © 2006 S. Karger AG

    AAV Vector-Mediated Overexpression of CB1 Cannabinoid Receptor in Pyramidal Neurons of the Hippocampus Protects against Seizure-Induced Excitoxicity

    Get PDF
    The CB1 cannabinoid receptor is the most abundant G-protein coupled receptor in the brain and a key regulator of neuronal excitability. There is strong evidence that CB1 receptor on glutamatergic hippocampal neurons is beneficial to alleviate epileptiform seizures in mouse and man. Therefore, we hypothesized that experimentally increased CB1 gene dosage in principal neurons would have therapeutic effects in kainic acid (KA)-induced hippocampal pathogenesis. Here, we show that virus-mediated conditional overexpression of CB1 receptor in pyramidal and mossy cells of the hippocampus is neuroprotective and moderates convulsions in the acute KA seizure model in mice. We introduce a recombinant adeno-associated virus (AAV) genome with a short stop element flanked by loxP sites, for highly efficient attenuation of transgene expression on the transcriptional level. The presence of Cre-recombinase is strictly necessary for expression of reporter proteins or CB1 receptor in vitro and in vivo. Transgenic CB1 receptor immunoreactivity is targeted to glutamatergic neurons after stereotaxic delivery of AAV to the dorsal hippocampus of the driver mice NEX-cre. Increased CB1 receptor protein levels in hippocampal lysates of AAV-treated Cre-mice is paralleled by enhanced cannabinoid-induced G-protein activation. KA-induced seizure severity and mortality is reduced in CB1 receptor overexpressors compared with AAV-treated control animals. Neuronal damage in the hippocampal CA3 field is specifically absent from AAV-treated Cre-transgenics, but evident throughout cortical areas of both treatment groups. Our data provide further evidence for a role of increased CB1 signaling in pyramidal hippocampal neurons as a safeguard against the adverse effects of excessive excitatory network activity

    Rac1 and Rac3 GTPases Regulate the Development of Hilar Mossy Cells by Affecting the Migration of Their Precursors to the Hilus

    Get PDF
    We have previously shown that double deletion of the genes for Rac1 and Rac3 GTPases during neuronal development affects late developmental events that perturb the circuitry of the hippocampus, with ensuing epileptic phenotype. These effects include a defect in mossy cells, the major class of excitatory neurons of the hilus. Here, we have addressed the mechanisms that affect the loss of hilar mossy cells in the dorsal hippocampus of mice depleted of the two Rac GTPases. Quantification showed that the loss of mossy cells was evident already at postnatal day 8, soon after these cells become identifiable by a specific marker in the dorsal hilus. Comparative analysis of the hilar region from control and double mutant mice revealed that synaptogenesis was affected in the double mutants, with strongly reduced presynaptic input from dentate granule cells. We found that apoptosis was equally low in the hippocampus of both control and double knockout mice. Labelling with bromodeoxyuridine at embryonic day 12.5 showed no evident difference in the proliferation of neuronal precursors in the hippocampal primordium, while differences in the number of bromodeoxyuridine-labelled cells in the developing hilus revealed a defect in the migration of immature, developing mossy cells in the brain of double knockout mice. Overall, our data show that Rac1 and Rac3 GTPases participate in the normal development of hilar mossy cells, and indicate that they are involved in the regulation of the migration of the mossy cell precursor by preventing their arrival to the dorsal hilus

    Enhanced expression of potassium-chloride cotransporter KCC2 in human temporal lobe epilepsy

    No full text
    Synaptic reorganization in the epileptic hippocampus involves altered excitatory and inhibitory transmission besides the rearrangement of dendritic spines, resulting in altered excitability, ion homeostasis, and cell swelling. The potassium-chloride cotransporter-2 (KCC2) is the main chloride extruder in neurons and hence will play a prominent role in determining the polarity of GABAA receptor-mediated chloride currents. In addition, KCC2 also interacts with the actin cytoskeleton which is critical for dendritic spine morphogenesis, and for the maintenance of glutamatergic synapses and cell volume. Using immunocytochemistry, we examined the cellular and subcellular levels of KCC2 in surgically removed hippocampi of temporal lobe epilepsy (TLE) patients and compared them to control human tissue. We also studied the distribution of KCC2 in a pilocarpine mouse model of epilepsy. An overall increase in KCC2-expression was found in epilepsy and confirmed by Western blots. The cellular and subcellular distributions in control mouse and human samples were largely similar; moreover, changes affecting KCC2-expression were also alike in chronic epileptic human and mouse hippocampi. At the subcellular level, we determined the neuronal elements exhibiting enhanced KCC2 expression. In epileptic tissue, staining became more intense in the immunopositive elements detected in control tissue, and profiles with subthreshold expression of KCC2 in control samples became labelled. Positive interneuron somata and dendrites were more numerous in epileptic hippocampi, despite severe interneuron loss. Whether the elevation of KCC2-expression is ultimately a pro- or anticonvulsive change, or both-behaving differently during ictal and interictal states in a context-dependent manner-remains to be established

    Loss and reorganization of calretinin-containing interneurons in the epileptic human hippocampus

    No full text
    Calretinin is expressed mainly in interneurons that specialize to innervate either principal cell dendrites or other interneurons in the human hippocampus. Calretinin-containing cells were shown to be vulnerable in animal models of ischaemia and epilepsy. In the human hippocampus, controversial data were published regarding their sensitivity in epilepsy. Therefore we aimed to reveal the fate of this cell type in human epileptic hippocampi. Surgically removed hippocampi of patients with drug-resistant temporal lobe epileptic (n = 44) were examined and compared to control (n = 8) samples with different post-mortem delays. The samples were immunostained for calretinin and the changes in the distribution, density and synaptic target selectivity of calretinin-positive cells were analysed. Control samples with post-mortem delays longer than 8 h resulted in a reduced number of immunolabelled cells compared to controls with short post-mortem delay. The number of calretinin-positive cells in the epileptic tissue was considerably decreased in correlation with the severity of principal cell loss. Preserved cells had segmented and shortened dendrites. Electron microscopic examination revealed that in controls, 23% of the calretinin-positive interneuronal terminals targeted calretinin-positive dendrites, whereas in the epileptic samples it was reduced to 3–5%. The number of contacts between calretinin-positive dendrites also dropped. The present quantitative data suggest that calretinin-containing cells in the human hippocampus are highly vulnerable, thus inhibition mediated by dendritic inhibitory cells and their synchronization by interneuron-specific interneurons may be impaired in epilepsy. We hypothesize that reorganization of the interneuron-selective cells may be implicated in the occurrence of seizures in non-sclerotic patients, where the majority of principal and non-principal cells are preserved
    corecore