9,632 research outputs found

    Quasi-phase-matching of high-order-harmonic generation using multimode polarization beating

    Full text link
    The generalization of quasi-phase-matching using polarization beating and of multimode quasi-phase-matching (MMQPM) for the generation of high-order harmonics is explored, and a method for achieving polarization beating is proposed. If two (and in principle more) modes of a waveguide are excited, modulation of the intensity, phase, and/or polarization of the guided radiation will be achieved. By appropriately matching the period of this modulation to the coherence length, quasi-phase-matching of high-order-harmonic radiation generated by the guided wave can occur. We show that it is possible to achieve efficiencies with multimode quasi-phase-matching greater than the ideal square wave modulation. We present a Fourier treatment of QPM and use this to show that phase modulation, rather than amplitude modulation, plays the dominant role in the case of MMQPM. The experimental parameters and optimal conditions for this scheme are explored

    Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Derived from our lignocellulosic conversion inhibitor-tolerant yeast, we generated an ethanol-tolerant strain <it>Saccharomyces cerevisiae </it>NRRL Y-50316 by enforced evolutionary adaptation. Using a newly developed robust mRNA reference and a master equation unifying gene expression data analyses, we investigated comparative quantitative transcription dynamics of 175 genes selected from previous studies for an ethanol-tolerant yeast and its closely related parental strain.</p> <p>Results</p> <p>A highly fitted master equation was established and applied for quantitative gene expression analyses using pathway-based qRT-PCR array assays. The ethanol-tolerant Y-50316 displayed significantly enriched background of mRNA abundance for at least 35 genes without ethanol challenge compared with its parental strain Y-50049. Under the ethanol challenge, the tolerant Y-50316 responded in consistent expressions over time for numerous genes belonging to groups of heat shock proteins, trehalose metabolism, glycolysis, pentose phosphate pathway, fatty acid metabolism, amino acid biosynthesis, pleiotropic drug resistance gene family and transcription factors. The parental strain showed repressed expressions for many genes and was unable to withstand the ethanol stress and establish a viable culture and fermentation. The distinct expression dynamics between the two strains and their close association with cell growth, viability and ethanol fermentation profiles distinguished the tolerance-response from the stress-response in yeast under the ethanol challenge. At least 82 genes were identified as candidate and key genes for ethanol-tolerance and subsequent fermentation under the stress. Among which, 36 genes were newly recognized by the present study. Most of the ethanol-tolerance candidate genes were found to share protein binding motifs of transcription factors Msn4p/Msn2p, Yap1p, Hsf1p and Pdr1p/Pdr3p.</p> <p>Conclusion</p> <p>Enriched background of transcription abundance and enhanced expressions of ethanol-tolerance genes associated with heat shock proteins, trehalose-glycolysis-pentose phosphate pathways and PDR gene family are accountable for the tolerant yeast to withstand the ethanol stress, maintain active metabolisms, and complete ethanol fermentation under the ethanol stress. Transcription factor Msn4p appeared to be a key regulator of gene interactions for ethanol-tolerance in the tolerant yeast Y-50316.</p

    Quasi-phase-matching of high-order-harmonic generation using polarization beating in optical waveguides

    Full text link
    A scheme for quasi-phase-matching high-harmonic generation is proposed in which polarization beating within a hollow core birefringent waveguide modulates the generation of harmonics. The evolution of the polarization of a laser pulse propagating in a birefringent waveguide is calculated and is shown to periodically modulate the harmonic generation process. The optimum conditions for achieving quasi-phase-matching using this scheme are explored and the growth of the harmonic intensity as a function of experimental parameters is investigated

    Measurements of Mesospheric Sodium Abundance above the Hawaiian Islands

    Get PDF
    Laser guide stars have increased the utility of adaptive optics systems by expanding the number of observable objects. The most common type of laser excites sodium in the mesosphere, and mesospheric sodium density is key to the performance of the laser. While a variety of observatories have conducted studies of the mesospheric sodium density, there are no published studies from Hawaii, which is home to some of the largest telescopes in the world. This paper presents mesospheric sodium densities measured by the University of Illinois lidar for 165 hr spanning 25 nights over 3 years. The mean sodium column density is 4.3 x 109 ± 0.2 x 109 cm-2, with a seasonal peak in the winter, as found at many other sites. The variations in a given night can be as high as the seasonal variation. We predict the average photon returns for the 15 W Keck II laser and a proposed 50 W laser at the Advanced Electro-Optical System 3.6 m telescope for the observed sodium abundances

    Nonlinear multi-state tunneling dynamics in a spinor Bose-Einstein condensate

    Full text link
    We present an experimental realization of dynamic self-trapping and non-exponential tunneling in a multi-state system consisting of ultracold sodium spinor gases confined in moving optical lattices. Taking advantage of the fact that the tunneling process in the sodium spinor system is resolvable over a broader dynamic energy scale than previously observed in rubidium scalar gases, we demonstrate that the tunneling dynamics in the multi-state system strongly depends on an interaction induced nonlinearity and is influenced by the spin degree of freedom under certain conditions. We develop a rigorous multi-state tunneling model to describe the observed dynamics. Combined with our recent observation of spatially-manipulated spin dynamics, these results open up prospects for alternative multi-state ramps and state transfer protocols

    Engineering Colloidal Metal-Semiconductor Nanorods Hybrid Nanostructures for Photocatalysis

    Get PDF
    Comprehensive Summary Emerging engineering strategies of colloidal metal-semiconductor nanorod hybrid nanostructures spanning from type, size, dimension, and location of both metal nanoparticles and semiconductors, co-catalyst, band gap structure, surface ligand to hole scavenger are elaborated symmetrically to rationalize the design of this type of intriguing materials for efficient photocatalytic applications. This article is protected by copyright. All rights reserved

    Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in order to use lignocellulosic biomass as a fermentation substrate faces several challenges. One challenge is the need for a robust fermentative microorganism that can tolerate the inhibitors present during lignocellulosic fermentation. These inhibitors include the furan aldehyde, furfural, which is released as a byproduct of pentose dehydration during the weak acid pretreatment of lignocellulose. In order to survive in the presence of furfural, yeast cells need not only to reduce furfural to the less toxic furan methanol, but also to protect themselves and repair any damage caused by the furfural. Since furfural tolerance in yeast requires a functional pentose phosphate pathway (PPP), and the PPP is associated with reactive oxygen species (ROS) tolerance, we decided to investigate whether or not furfural induces ROS and its related cellular damage in yeast.</p> <p>Results</p> <p>We demonstrated that furfural induces the accumulation of ROS in <it>Saccharomyces cerevisiae</it>. In addition, furfural was shown to cause cellular damage that is consistent with ROS accumulation in cells which includes damage to mitochondria and vacuole membranes, the actin cytoskeleton and nuclear chromatin. The furfural-induced damage is less severe when yeast are grown in a furfural concentration (25 m<it>M</it>) that allows for eventual growth after an extended lag compared to a concentration of furfural (50 m<it>M</it>) that prevents growth.</p> <p>Conclusion</p> <p>These data suggest that when yeast cells encounter the inhibitor furfural, they not only need to reduce furfural into furan methanol but also to protect themselves from the cellular effects of furfural and repair any damage caused. The reduced cellular damage seen at 25 m<it>M </it>furfural compared to 50 m<it>M </it>furfural may be linked to the observation that at 25 m<it>M </it>furfural yeast were able to exit the furfural-induced lag phase and resume growth. Understanding the cellular effects of furfural will help direct future strain development to engineer strains capable of tolerating or remediating ROS and the effects of ROS.</p

    On the evaluation of global sea-salt aerosol models at coastal/orographic sites

    Get PDF
    Sea-salt aerosol global models are typically evaluated against concentration observations at coastal stations that are unaffected by local surf conditions and thus considered representative of open ocean conditions. Despite recent improvements in sea-salt source functions, studies still show significant model errors in specific regions. Using a multiscale model, we investigated the effect of high model resolution (0.1 degrees x 0.1 degrees vs. 1 degrees x 1.4 degrees) upon sea-salt patterns in four stations from the University of Miami Network: Baring Head, Chatam Island, and Invercargill in New Zealand, and Marion Island in the sub-antarctic Indian Ocean. Normalized biases improved from +63.7% to +3.3% and correlation increased from 0.52 to 0.84. The representation of sea/land interfaces, mesoscale circulations, and precipitation with the higher resolution model played a major role in the simulation of annual concentration trends. Our results recommend caution when comparing or constraining global models using surface concentration observations from coastal stations. (C) 2014 The Authors. Published by Elsevier Ltd.Postprint (published version

    Measuring Contact Area in a Sliding Human Finger-Pad Contact

    Get PDF
    Background/Purpose The work outlined in this paper was aimed at achieving further understanding of skin frictional behaviour by investigating the contact area between human finger-pads and flat surfaces. Methods Both the static and the dynamic contact areas (in macro- and micro-scales) were measured using various techniques, including ink printing, optical coherence tomography (OCT) and Digital Image Correlation (DIC). Results In the studies of the static measurements using ink printing, the experimental results showed that the apparent and the real contact area increased with load following a piecewise linear correlation function for a finger-pad in contact with paper sheets. Comparisons indicated that the OCT method is a reliable and effective method to investigate the real contact area of a finger-pad and allow micro-scale analysis. The apparent contact area (from the DIC measurements) was found to reduce with time in the transition from the static phase to the dynamic phase while the real area of contact (from OCT) increased. Conclusions The results from this study enable the interaction between finger-pads and contact object surface to be better analysed, and hence improve the understanding of skin friction
    • …
    corecore