266 research outputs found

    Intraflagellar Transport (IFT) Protein IFT25 Is a Phosphoprotein Component of IFT Complex B and Physically Interacts with IFT27 in Chlamydomonas

    Get PDF
    BACKGROUND: Intraflagellar transport (IFT) is the bidirectional movement of IFT particles between the cell body and the distal tip of a flagellum. Organized into complexes A and B, IFT particles are composed of at least 18 proteins. The function of IFT proteins in flagellar assembly has been extensively investigated. However, much less is known about the molecular mechanism of how IFT is regulated. METHODOLOGY/PRINCIPAL FINDINGS: We herein report the identification of a novel IFT particle protein, IFT25, in Chlamydomonas. Dephosphorylation assay revealed that IFT25 is a phosphoprotein. Biochemical analysis of temperature sensitive IFT mutants indicated that IFT25 is an IFT complex B subunit. In vitro binding assay confirmed that IFT25 binds to IFT27, a Rab-like small GTPase component of the IFT complex B. Immunofluorescence staining showed that IFT25 has a punctuate flagellar distribution as expected for an IFT protein, but displays a unique distribution pattern at the flagellar base. IFT25 co-localizes with IFT27 at the distal-most portion of basal bodies, probably the transition zones, and concentrates in the basal body region by partially overlapping with other IFT complex B subunits, such as IFT46. Sucrose density gradient centrifugation analysis demonstrated that, in flagella, the majority of IFT27 and IFT25 including both phosphorylated and non-phosphorylated forms are cosedimented with other complex B subunits in the 16S fractions. In contrast, in cell body, only a fraction of IFT25 and IFT27 is integrated into the preassembled complex B, and IFT25 detected in complex B is preferentially phosphorylated. CONCLUSION/SIGNIFICANCE: IFT25 is a phosphoprotein component of IFT particle complex B. IFT25 directly interacts with IFT27, and these two proteins likely form a subcomplex in vivo. We postulate that the association and disassociation between the subcomplex of IFT25 and IFT27 and complex B might be involved in the regulation of IFT

    Methods to Study Centrosomes and Cilia in Drosophila

    Get PDF
    The deposited item is a book chapter and is part of the series " Methods in Molecular Biology book series ([MIMB, volume 1454]) published by the publisher Humana Press.The deposited book chapter is a pre-print version and hasn't been submitted to peer reviewing.There is no public supplementary material available for this publication.This publication hasn't any creative commons license associated.Centrioles and cilia are highly conserved eukaryotic organelles. Drosophila melanogaster is a powerful genetic and cell biology model organism, extensively used to discover underlying mechanisms of centrosome and cilia biogenesis and function. Defects in centrosomes and cilia reduce fertility and affect different sensory functions, such as proprioception, olfaction, and hearing. The fly possesses a large diversity of ciliary structures and assembly modes, such as motile, immotile, and intraflagellar transport (IFT)-independent or IFT-dependent assembly. Moreover, all the diverse ciliated cells harbor centrioles at the base of the cilia, called basal bodies, making the fly an attractive model to better understand the biology of this organelle. This chapter describes protocols to visualize centrosomes and cilia by fluorescence and electron microscopy.Fundação Portuguesa para a Ciência e Tecnologia grants: (SFRH/BPD/87479/2012, SFRH/BD/52176/2013); EMBO installation grant; ERC starting grant.info:eu-repo/semantics/publishedVersio

    Search for R-parity violating supersymmetry via the LLE couplings lambda_{121}, lambda_{122} or lambda_{133} in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    A search for gaugino pair production with a trilepton signature in the framework of R-parity violating supersymmetry via the couplings lambda_121, lambda_122, or lambda_133 is presented. The data, corresponding to an integrated luminosity of L~360/pb, were collected from April 2002 to August 2004 with the D0 detector at the Fermilab Tevatron Collider, at a center-of-mass energy of sqrt(s)=1.96 TeV. This analysis considers final states with three charged leptons with the flavor combinations eel, mumul, and eetau (l=e or mu). No evidence for supersymmetry is found and limits at the 95% confidence level are set on the gaugino pair production cross section and lower bounds on the masses of the lightest neutralino and chargino are derived in two supersymmetric models.Comment: 9 pages, 4 figures (fig2 includes 3 subfigures

    Search for Neutral Higgs Bosons Decaying to Tau Pairs in p-pbar Collisions at sqrt(s) = 1.96 TeV

    Full text link
    A search for the production of neutral Higgs bosons Phi decaying into tau^+tau^- final states in p-pbar collisions at a center-of-mass energy of 1.96 TeV is presented. The data, corresponding to an integrated luminosity of up to 348 pb^-1, were collected by the D0 experiment at the Fermilab Tevatron Collider. Since no excess compared to the expectation from standard model processes is found, limits on the production cross section times branching ratio are set. The results are combined with those obtained from the D0 search for Phi b(b) to b-bbar-b(bbar) and are interpreted in the minimal supersymmetric standard model.Comment: Version accpeted by Phys. Rev. Lett. (minor changes

    Search for W' boson production in the W'->tb decay channel

    Get PDF
    We present a search for the production of a new heavy gauge boson W' that decays to a top quark and a bottom quark. We have analyzed 230 pb^{-1} of data collected with the Dzero detector at the Fermilab Tevatron collider at a center-of-mass energy of 1.96 TeV. No significant excess of events above the standard model expectation is found in any region of the final state invariant mass distribution. We set upper limits on the production cross section of W' bosons times branching ratio to top quarks at the 95% confidence level for several different W' boson masses. We exclude masses between 200 GeV and 610 GeV for a W' boson with standard-model-like couplings, between 200 GeV and 630 GeV for a W' boson with right-handed couplings that is allowed to decay to both leptons and quarks, and between 200 GeV and 670 GeV for a W' boson with right-handed couplings that is only allowed to decay to quarks.Comment: 9 pages, 6 figures, accepted by Phys. Lett.

    A search for W bb and W Higgs production in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present a search for W b \bar{b} production in p \bar{p} collisions at sqrt{s}=1.96 TeV in events containing one electron, an imbalance in transverse momentum, and two b-tagged jets. Using 174 pb-1 of integrated luminosity accumulated by the D0 experiment at the Fermilab Tevatron collider, and the standard-model description of such events, we set a 95% C.L. upper limit on W b \bar{b}productionof6.6pbforbquarkswithtransversemomentapTb>20GeVandbbˉseparationinpseudorapidityazimuthspaceDeltaRbb>0.75.Restrictingthesearchtooptimizedbbˉmassintervalsprovidesupperlimitson production of 6.6 pb for b quarks with transverse momenta p_T^b > 20 GeV and b \bar{b} separation in pseudorapidity-azimuth space Delta R_bb > 0.75. Restricting the search to optimized b \bar{b} mass intervals provides upper limits on WHproductionof9.0 production of 9.0-12.2pb,forHiggsbosonmassesof10512.2 pb, for Higgs-boson masses of 105-$135 GeV.Comment: 7 pages, 4 figures, 1 table, submitted to Physical Review Letter

    Measurement of the Bs0B^{0}_{s} Lifetime Using Semileptonic Decays

    Full text link
    We report a measurement of the Bs0B^0_{s} lifetime in the semileptonic decay channel Bs0Dsμ+νXB^0_{s}\to D^-_s \mu^{+}\nu X (and its charge conjugate), using approximately 0.4 fb1^{-1} of data collected with the D0 detector during 2002 -- 2004. We have reconstructed 5176 Dsμ+D^-_s \mu^{+} signal events, where the DsD_s^- is identified via the decay DsϕπD_s^-\to \phi\pi^-, followed by ϕK+K\phi\to K^+ K^-. Using these events, we have measured the Bs0B^0_s lifetime to be τ(Bs0)=1.398±0.044\tau(B^0_{s}) = 1.398 \pm 0.044 (stat)0.025+0.028({stat}) ^{+0.028}_{-0.025} (syst)ps({syst}) {ps}. This is the most precise measurement of the Bs0B_s^0 lifetime to date.Comment: To appear in Phys. Rev. Lett., 7 pages, 2 figure

    Search for right-handed W bosons in top quark decay

    Full text link
    We present a measurement of the fraction f+ of right-handed W bosons produced in top quark decays, based on a candidate sample of ttˉt\bar{t} events in the lepton+jets decay mode. These data correspond to an integrated luminosity of 230pb^-1, collected by the DO detector at the Fermilab Tevatron ppˉp\bar{p} Collider at sqrt(s)=1.96 TeV. We use a constrained fit to reconstruct the kinematics of the ttˉt\bar{t} and decay products, which allows for the measurement of the leptonic decay angle θ\theta^* for each event. By comparing the cosθ\cos\theta^* distribution from the data with those for the expected background and signal for various values of f+, we find f+=0.00+-0.13(stat)+-0.07(syst). This measurement is consistent with the standard model prediction of f+=3.6x10^-4.Comment: Submitted to Physical Review D Rapid Communications 7 pages, 3 figure

    Search for the Rare Decay B0_s -> phi mu^+ mu- with the D0 Detector

    Full text link
    We present a search for the flavor-changing neutral current decay B0_s -> phi mu+ mu- using about 0.45 fb^-1 of data collected in p \bar p collisions at sqrt{s} =1.96 TeV with the D{\O}detector at the Fermilab Tevatron Collider. We find an upper limit on the branching ratio of this decay normalized to B0_s -> J/psi phi of B(B0_s -> phi mu+ mu-)/B(B0_s -> J/psi phi) < 4.4\times 10^{-3} at the 95% C.L. Using the central value of the world average branching fraction of B0_s -> J/psi phi, the limit corresponds to B(B0_s -> phi mu+ mu-) < 4.1 \times 10^{-6} at the 95% C.L., the most stringent upper bound to date.Comment: 7 pages, 2 figures, LaTeX, to be submitted to Physical Review Letter
    corecore