28 research outputs found

    Dynamics of the cytosolic chelatable iron pool of K562 cells

    Get PDF
    AbstractThe labile iron pool of cells (LIP) constitutes the primary source of metabolic and catalytically reactive iron in the cytosol. We studied LIP homeostasis in K562 cells using the fluorescent metal-sensitive probe calcein. Following brief exposure to iron(II) salts or to oxidative or reductive stress, LIP rose by up to 120% relative to the normal level of 350 nM. However, the rate of recovery to normal LIP level differed markedly with each treatment (respective t12s of 27, 65–88 and ≤17 min). We show that the capacity of K562 cells to adjust LIP levels is highly dependent on the origin of the LIP increase and on the pre-existing cellular iron status

    Could conservative iron chelation lead to neuroprotection in amyotrophic lateral sclerosis?

    Get PDF
    Iron accumulation has been observed in mouse models and both sporadic and familial forms of Amyotrophic lateral sclerosis. Iron chelation could reduce iron accumulation and the related excess of oxidative stress in the motor pathways. However, classical iron chelation would induce systemic iron depletion. We assess the safety and efficacy of conservative iron chelation (i.e. chelation with low risk of iron depletion) in a murine preclinical model and pilot clinical trial. In Sod1G86R mice, deferiprone increased the mean life span as compared with placebo. The safety was good, without anemia after 12 months of deferiprone in the 23 ALS patients enrolled in the clinical trial. The decreases in the ALS Functional Rating Scale and the body mass index (BMI) were significantly smaller for the first 3 months of deferiprone treatment (30 mg/kg/day) than for the first treatment-free period. Iron levels in the cervical spinal cord, medulla oblongata and motor cortex (according to MRI), as well as cerebrospinal fluid levels of oxidative stress and neurofilament light chains were lower after deferiprone treatment. Our observation leads to the hypothesis that moderate iron chelation regimen that avoids changes in systemic iron levels may constitute a novel therapeutic modality of neuroprotection for ALS

    Characterization of mitochondrial iron uptake in HepG2 cells

    No full text
    There is increasing evidence that accumulation of redox-active iron in mitochondria leads to oxidative damage and contributes to various neurodegenerative diseases, such as Friedreich's ataxia and Parkinson's disease. In this work, we examined the existence of regulatory mechanisms for mitochondrial iron uptake and storage. To that end, we used rhodamine B- [(1,10-phenanthrolin-5-yl)amino carbonyl ] benzyl ester, a new fluorescent iron-sensitive probe that is targeted specifically to the mitochondrion. We found that extracellular iron was incorporated readily into mitochondria in an apparently saturable process. Moreover, the rate of iron incorporation responded to the Fe status of the cell, an indication that the mitochondrion actively regulates its iron content
    corecore