114 research outputs found

    Універсітэт. - № 11 (2114)

    Get PDF
    PERMON makes use of theoretical results in quadratic programming algorithms and domain decomposition methods. It is built on top of the PETSc framework for numerical computations. This paper describes its fundamental packages and shows their applications. We focus here on contact problems of mechanics decomposed by means of a FETI-type non-overlapping domain decomposition method. These problems lead to inequality constrained quadratic programming problems that can be solved by our PermonQP package.11510

    Predictive control of systems with fast dynamics using computational reduction based on feedback control information

    Get PDF
    Predictive control is a method, which is suitable for control of linear discrete dynamical systems. However, control of systems with fast dynamics could be problematic using predictive control. The calculation of a predictivecontrol algorithm can exceed the sampling period. This situation occurs in case with higher prediction horizons and many constraints on variables in the predictive control. In this contribution, an improving of the classical approach is presented. The reduction of the computational time is performed using an analysis of steady states in the control. The presented approach is based on utilization of information from the feedback control. Then this information is applied in the control algorithm. Finally, the classical method is compared to the presented modification using the time analyses. © Springer International Publishing Switzerland 2015

    A three-scale domain decomposition method for the 3D analysis of debonding in laminates

    Full text link
    The prediction of the quasi-static response of industrial laminate structures requires to use fine descriptions of the material, especially when debonding is involved. Even when modeled at the mesoscale, the computation of these structures results in very large numerical problems. In this paper, the exact mesoscale solution is sought using parallel iterative solvers. The LaTIn-based mixed domain decomposition method makes it very easy to handle the complex description of the structure; moreover the provided multiscale features enable us to deal with numerical difficulties at their natural scale; we present the various enhancements we developed to ensure the scalability of the method. An extension of the method designed to handle instabilities is also presented

    Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers

    Get PDF
    In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/. The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord

    Ultramafic vegetation and soils in the circumboreal region of the Northern Hemisphere

    Full text link
    The paper summarizes literature on climate, soil chemistry, vegetation and metal accumulation by plants found on ultramafic substrata in the circumboreal zone (sensu Takhtajan, Floristic regions of the world, 1986) of the Northern Hemisphere. We present a list of 50 endemic species and 18 ecotypes obligate to ultramafic soils from the circumboreal region of Holarctic, as well as 30 and 2 species of Ni and Zn hyperaccumulators, respectively. The number of both endemics and hyperaccumulators are markedly lower compared to that of the Mediterranean and tropical regions. The diversity of plant communities on ultramafics soils of the circumboral region is also described. The underlying causes for the differences of ultramafic flora between arctic, cold, cool temperate and Mediterranean and tropical regions are also discussed. © 2018, The Ecological Society of Japan

    Parallel solution of contact shape optimization problems based on Total FETI domain decomposition method

    No full text
    An application of a variant of the parallel domain decomposition method that we call Total FETI or TFETI (Total Finite Element Tearing and Interconnecting) for the solution of contact problems of elasticity to the parallel solution of contact shape optimization problems is described. A unique feature of the TFETI algorithm is its capability to solve large contact problems with optimal, i.e., asymptotically linear complexity. We show that the algorithm is even more efficient for the solution of the contact shape optimization problems as it can exploit effectively a specific structure of the auxiliary problems arising in the semi-analytic sensitivity analysis. Thus the triangular factorizations of the stiffness matrices of the subdomains are carried out in parallel only once for each design step, the evaluation of the components of the gradient of the cost function can be carried out in parallel, and even the evaluation of each component of the gradient itself can be further parallelized using the standard TFETI scheme. Theoretical results which prove asymptotically linear complexity of the solution are reported and documented by numerical experiments. The results of numerical solution of a 3D contact shape optimization problem confirm the high degree of parallelism of the algorithm
    corecore