8,942 research outputs found

    C2_2H observations toward the Orion Bar

    Get PDF
    C2_2H is one of the first radicals to be detected in the interstellar medium. Its higher rotational transitions have recently become available with the Herschel Space Observatory. We aim to constrain the physical parameters of the C2_2H emitting gas toward the Orion Bar. We analyse the C2_2H line intensities measured toward the Orion Bar CO+^+ Peak and Herschel/HIFI maps of C2_2H, CH, and HCO+^+, and a NANTEN map of [CI]. We interpret the observed C2_2H emission using radiative transfer and PDR models. Five rotational transitions of C2_2H have been detected in the HIFI frequency range toward the CO+^+ peak. A single component rotational diagram gives a rotation temperature of ~64 K and a beam-averaged C2_2H column density of 4×\times1013^{13} cm2^{-2}. The measured transitions cannot be explained by any single parameter model. According to a non-LTE model, most of the C2_2H column density produces the lower-NN C2_2H transitions and traces a warm (TkinT_{\rm{kin}} ~ 100-150 K) and dense (nn(H2_2)~105^5-106^6 cm3^{-3}) gas. A small fraction of the C2_2H column density is required to reproduce the intensity of the highest-NN transitions (NN=9-8 and N=10-9) originating from a high density (nn(H2_2)~5×\times106^6 cm3^{-3}) hot (TkinT_{\rm{kin}} ~ 400 K) gas. The total beam-averaged C2_2H column density in the model is 1014^{14} cm2^{-2}. Both the non-LTE radiative transfer model and a simple PDR model representing the Orion Bar with a plane-parallel slab of gas and dust suggest, that C2_2H cannot be described by a single pressure component, unlike the reactive ion CH+^+, which was previously analysed toward the Orion Bar CO+^+ peak. The physical parameters traced by the higher rotational transitions (NN=6-5,...,10-9) of C2_2H may be consistent with the edges of dense clumps exposed to UV radiation near the ionization front of the Orion Bar.Comment: Proposed for acceptance in A&A, abstract abridge

    Multi-jet cross sections in deep inelastic scattering at next-to-leading order

    Full text link
    We present the perturbative prediction for three-jet production cross section in DIS at the NLO accuracy. We study the dependence on the renormalization and factorization scales of exclusive three-jet cross section. The perturbative prediction for the three-jet differential distribution as a function of the momentum transfer is compared to the corresponding data obtained by the H1 collaboration at HERA.Comment: 5 pages, 3 figure

    Three-jet cross sections in hadron-hadron collisions at next-to-leading order

    Get PDF
    We present a new QCD event generator for hadron collider which can calculate one-, two- and three-jet cross sections at next-to-leading order accuracy. In this letter we study the transverse energy spectrum of three-jet hadronic events using the kT algorithm. We show that the next-to-leading order correction significantly reduces the renormalization and factorization scale dependence of the three-jet cross section.Comment: 4 pages, 4 figures, REVTEX

    Semi-numerical resummation of event shapes

    Get PDF
    For many event-shape observables, the most difficult part of a resummation in the Born limit is the analytical treatment of the observable's dependence on multiple emissions, which is required at single logarithmic accuracy. We present a general numerical method, suitable for a large class of event shapes, which allows the resummation specifically of these single logarithms. It is applied to the case of the thrust major and the oblateness, which have so far defied analytical resummation and to the two-jet rate in the Durham algorithm, for which only a subset of the single logs had up to now been calculated.Comment: 29 pages, 7 figures. Version 2 adds some clarifications, a reference, as well as corrections to the subleading fixed-order coefficients and to figures 4 and

    Physical and chemical differentiation of the luminous star-forming region W49A - Results from the JCMT Spectral Legacy Survey

    Get PDF
    The massive and luminous star-forming region W49A is a well known Galactic candidate to probe the physical conditions and chemistry similar to those expected in external starburst galaxies. We aim to probe the physical and chemical structure of W49A on a spatial scale of ~0.8 pc based on the JCMT Spectral Legacy Survey, which covers the frequency range between 330 and 373 GHz. The wide 2x2 arcminutes field and the high spectral resolution of the HARP instrument on JCMT provides information on the spatial structure and kinematics of the cloud. For species where multiple transitions are available, we estimate excitation temperatures and column densities. We detected 255 transitions corresponding to 60 species in the 330-373 GHz range at the center position of W49A. Excitation conditions can be probed for 16 molecules. The chemical composition suggests the importance of shock-, PDR-, and hot core chemistry. Many molecular lines show a significant spatial extent across the maps including high density tracers (e.g. HCN, HNC, CS, HCO+) and tracers of UV-irradiation (e.g. CN and C2H). Large variations are seen between the sub-regions with mostly blue-shifted emission toward the Eastern tail, mostly red-shifted emission toward the Northern clump, and emission peaking around the expected source velocity toward the South-west clump. A comparison of column density ratios of characteristic species observed toward W49A to Galactic PDRs suggests that while the chemistry toward the W49A center is driven by a combination of UV-irradiation and shocks, UV-irradiation dominates for the Northern Clump, Eastern tail, and South-west clump regions. A comparison to a starburst galaxy and an AGN suggests similar C2H, CN, and H2CO abundances (with respect to the dense gas tracer 34CS) between the ~0.8 pc scale probed for W49A and the >1 kpc regions in external galaxies with global star-formation.Comment: Proposed for acceptance in A&A, abstract abridge

    The chemical structure of the very young starless core L1521E

    Get PDF
    L1521E is a dense starless core in Taurus that was found to have relatively low molecular depletion by earlier studies, thus suggesting a recent formation. We aim to characterize the chemical structure of L1521E and compare it to the more evolved L1544 pre-stellar core. We have obtained \sim2.5×\times2.5 arcminute maps toward L1521E using the IRAM-30m telescope in transitions of various species. We derived abundances for the species and compared them to those obtained toward L1544. We estimated CO depletion factors. Similarly to L1544, cc-C3_3H2_2 and CH3_3OH peak at different positions. Most species peak toward the cc-C3_3H2_2 peak. The CO depletion factor derived toward the HerschelHerschel dust peak is 4.3±\pm1.6, which is about a factor of three lower than that toward L1544. The abundances of sulfur-bearing molecules are higher toward L1521E than toward L1544 by factors of \sim2-20. The abundance of methanol is similar toward the two cores. The higher abundances of sulfur-bearing species toward L1521E than toward L1544 suggest that significant sulfur depletion takes place during the dynamical evolution of dense cores, from the starless to pre-stellar stage. The CO depletion factor measured toward L1521E suggests that CO is more depleted than previously found. Similar CH3_3OH abundances between L1521E and L1544 hint that methanol is forming at specific physical conditions in Taurus, characterized by densities of a few ×\times104^4 cm3^{-3} and NN(H2_2)\gtrsim1022^{22} cm2^{-2}, when CO starts to catastrophically freeze-out, while water can still be significantly photodissociated, so that the surfaces of dust grains become rich in solid CO and CH3_3OH, as already found toward L1544. Methanol can thus provide selective crucial information about the transition region between dense cores and the surrounding parent cloud.Comment: Accepted for publication in A&A, abstract abridge

    QCD Corrections to Four-jet Production and Three-jet Structure in e+ e- annihilation

    Get PDF
    We report on the general purpose numerical program MERCUTIO, which can be used to calculate any infrared safe four-jet quantity in electron-positron annihilation at next-to-leading order. The program is based on the dipole formalism and uses a remapping of phase-space in order to improve the efficiency of the Monte Carlo integration. Numerical results are given for the four-jet fraction and the D-parameter. These results are compared with already existing ones in the literature and serve as a cross-check. The program can also be used to investigate the internal structure of three-jet events at NLO. We give results for previously uncalculated observables: the jet broadening variable and the softest-jet explanarity.Comment: 28 pages, Latex, final versio
    corecore