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1. Introduction

In QCD, for many observables of interest, the only calculational approach that is currently

available is a perturbative expansion in powers of the strong coupling αs. Quite often the

coefficients of this expansion are well behaved and reasonable accuracy can be obtained

given the first two or three terms of the series.

However there exist whole classes of observables for which the coefficients grow rapidly

order by order. Typically this happens in problems involving two or more scales, in which

– 1 –



J
H
E
P
0
1
(
2
0
0
2
)
0
1
8

case the coefficient of αn
s may involve up to 2n factors of the logarithm, L, of the ratio of

scales. These logarithms are generally associated with soft and collinear regions of phase

space. When L is large it compensates the smallness of αs and reliable predictions can

be obtained only by including an infinite number of terms. While significant technical

difficulties prevent an exact determination of high-order terms, it is sometimes possible to

calculate the coefficient of their dominant (and sub-dominant) logarithmic parts, order by

order, and resum this subset of terms. In many cases this is sufficient to obtain a reliable

prediction.

One class of observables that has been extensively studied in this context is that of

event shapes [1]–[12] and jet rates [13, 14, 15]. These measure geometrical properties of the

hadronic energy flow in the final state of a given reaction, e.g. in e+e− → hadrons, and are

widely used in tests of QCD, the measurement of αs, and studies of the interface between

perturbative and non-perturbative physics. When the value V of the observable is small,

the perturbative expansion of its distribution is dominated by terms (αn
s ln2n−1 V )/V and

a resummation is necessary.

The determination of the order αs and α2
s contributions to such observables is usually

fairly straightforward. One writes a computer subroutine which calculates the observable

for an arbitrary set of 4-momenta and links it with a program which codes the fixed-order

real and virtual matrix elements for a given process. The ‘hard’ part of the problem

is to determine the matrix elements and code them into the program so as to obtain a

numerically efficient cancellation of real and virtual contributions. But this part of the

problem is common to all infrared and collinear safe observables and is ‘ready-solved’ in

the form of a range of publicly-available programs, such as EVENT2 and DISENT [16],

and also many others, see for example [17]–[22].

On the other hand the determination of resummed distributions of event shape ob-

servables has up to now proved more labour-intensive. This is despite the fact that many

aspects of the calculation are actually fairly similar from one observable to another —

for example one can generally make the same set of approximations concerning the multi-

particle matrix-element, writing it as a product of matrix elements for independent emis-

sions. However it is also necessary to relate the value of the observable to some condition

on the ensemble of emissions. For a resummation to be feasible analytically, one must

express this condition as a product of factors each involving a single emission. It is this

part that requires a separate analytical calculation for each observable.

To explain in more detail what we mean, it is useful to consider the thrust T in e+e−

(defined in appendix B).1 In the two-jet region its value is given by a sum over contributions

from individual emissions:

T = 1−
∑

i

kti
Q
e−|ηi| . (1.1)

In performing the resummation one determines the cross section for 1 − T to be smaller

than some value, say 1− T < τ . Using an integral transform this condition can be written

1The thrust is slightly unusual in that the two-jet region (where the resummation is needed) corresponds

to T → 1, but this is just a matter of definition.
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as

Θ(τ − (1− T )) =

∫

dν

2πiν
eντ
∏

i

exp

(

−ν kti
Q
e−|ηi|

)

, (1.2)

which is a product of factors for individual emissions, just as required.

The thrust is a particularly simple example, because it is easy both to determine its

dependence on multiple emissions, eq. (1.1), and to factorise this dependence, eq. (1.2).

Other variables are less trivial. For example for the jet-broadenings the determination of

the dependence on multiple emissions involves subtle issues of hard-parton recoil, and the

factorisation requires at least two integral transforms [4]. Some multi-jet event shapes, such

as the thrust minor in the three-jet limit involve as many as five additional Fourier trans-

forms [8]! This makes the resummation of event shapes quite tedious (and sometimes even

error prone). Furthermore for some variables, for example the thrust major and oblateness

in e+e−, it is not even possible to write down a closed expression for the dependence of the

observable on a general multi-particle configuration, rendering an analytical resummation

unfeasible.

So in this article we take a step towards the development of a systematic semi-numerical

approach for calculating resummed distributions for a large class of observables, essentially

those for which double logarithms exponentiate. The probability, Σ(v), of a suitable ob-

servable having a value smaller than v is given by an expression of the form

Σ(v) = exp [Lg1(αsL) + g2(αsL) + · · · ] , L = ln 1/v . (1.3)

The terms in Lg1(αsL) are known as leading, or double logarithms (LL, DL), and start

at O
(

αsL
2
)

. The terms in g2(αsL) are known as next-to-leading, or single logarithms

(NLL, SL), and start at O (αsL). The double logarithms arise from a veto of a soft and

collinear portion of phase space and are straightforward to calculate. The single logarithms

arise from a variety of sources. For global variables [12] most of the sources (e.g. from the

running coupling, hard collinear emission, angles between hard partons) can be understood

by considering the phase space for just a single emission. What remain are single logarithms

associated with the observable’s dependence on multiple emissions. It is this contribution

that we address here.

Our method involves first considering a ‘simple’ reference variable, in which the depen-

dence on multiple emissions is trivial, leading to a straightforward analytical resummation.

One then numerically relates the resummation of the simple variable to that of a more

complicated variable of our choosing. For this to work the two variables must have the

same structure of double logs.

So in section 2 we show how to relate a pair of variables with the same double logs, and

give a procedure for designing a suitable ‘simple’ reference variable. We then show how

this can be implemented in a Monte Carlo algorithm for calculating the single-logarithmic

function relating the resummation of the two variables.

In section 3 we show that this method reproduces known results, with examples from

e+e− → 2 jets and e+e− → 3 jets.

Finally in section 4 we present new results for some widely studied variables in e+e− →
2 jets: for the thrust major and the oblateness for which no resummation had ever been
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performed up to now (and which are probably beyond analytical treatment) and for the

Durham three-jet resolution parameter for which resummed results existed but not to full

NLL order [13, 14].

2. General procedure

This section sets out the principal elements of our approach. It is divided into several parts.

First we see how, at NLL accuracy, to relate the distributions of two variables, starting

from knowledge of the probability of distribution of one variable given the value of the

other.

We then see how to design a ‘simple’ reference variable for which the analytical re-

summation is trivial and examine how to calculate the probability distribution of a more

complicated variable given the value of this simple one.

The section finishes with the consideration of the subtle but practically important is-

sues of how to ensure that our final numerical calculation is free of contamination from

next-to-next-to-leading logarithmic (NNLL) corrections, and how to determine its expan-

sion to second order in αs (needed for the subtraction of doubly counted terms when

matching to fixed order results).

2.1 Relating the resummations of two observables

Suppose we have a ‘complicated’ observable V and a ‘simple’ observable Vs with the same

all-orders double logarithmic structure (terms αn
sL

n+1 in the exponent). We introduce the

probability distribution P (v|vs) for the value v of the complicated observable, given a value

vs for the simple one.

Writing the distribution of the simple observable as Ds(vs)/vs, one obtains the distri-

bution of the more complex observable D(v)/v through the following convolution:

D(v) = v

∫

dvs
vs

Ds(vs)P (v|vs) . (2.1)

If P (v|vs) is dominated by the region v ∼ vs (this will follow naturally from the two

variables having the same double-log structure) then one may expand the distribution

Ds(vs) using eq. (1.3),

Ds(vs) = Ds(v) exp

(

−R′ ln v

vs
+O

(

αn
sL

n−1 ln2 v

vs

))

, (2.2)

where R′, which is related to the (differential) phase space for emissions, is defined as

R′ = −d lnΣ
dL

. (2.3)

Neglecting NNLL terms, αn
sL

n−1, this gives

D(v) = vDs(v)

∫

dvs
vs

e−R
′ ln v/vs P (v|vs) . (2.4)
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As we shall see shortly, for suitable observables (as defined in appendix A), to NLL accuracy

vP (v|vs) depends only on the ratio v/vs and on the phase space for emissions (through R′):

P (v|vs) =
1

v
p

(

v

vs
, R′
)(

1 +O
(

αn
sL

n−1 ln
v

vs

))

, (2.5)

where we have introduced a rescaled probability p(x,R′) for the ratio v/vs to be to equal

to x (with measure dx/x). As long as v and vs are of the same order, the ambiguity

of whether R′ should be evaluated at v or vs corresponds to a subleading effect since

R′(v) = R′(vs) +O
(

αn
sL

n−1 ln v/vs
)

. This allows us to write

D(v) = Ds(v)F(R′) , (2.6)

where

F(R′) =
∫

dx

x
e−R

′ lnx p
(

x,R′
)

. (2.7)

A relation analogous to eq. (2.6) holds also for the integrated distributions

Σ(v) = Σs(v)F(R′) , (2.8)

as can be seen by differentiating and noting that extra term relative to (2.6) is subleading:

d

dL
Σ(v) =

(

F(R′) + R′′ dFdR′

d
dL lnΣs

)

d

dL
Σs(v) . (2.9)

2.2 The ‘simple’ observable

So far the simple observable has been left as a fairly vague concept. Here we outline a

concrete procedure for constructing it.

Given a Born configuration consisting of hard momenta {pBorn} together with an ar-

bitrary set of soft and collinear emissions k1, . . . , kn, a general way of defining the simple

observable is as follows:

Vs({pBorn}, k1, k2, . . . , kn) = max [V ({pBorn}, k1), V ({pBorn}, k2), . . . , V ({pBorn}, kn)] .
(2.10)

This definition is unsafe with respect to secondary collinear branching of the soft and

collinear emissions. However for the ‘suitable’ class of event shapes under consideration,

secondary collinear branching is irrelevant except insofar as it is responsible for determining

the scale of the coupling [1] — accordingly to calculate the resummation of the simple

observable and F(R′) we consider only independent emissions from the Born configuration

and account for collinear splitting by directly setting the scale of the coupling.2

Having dealt with this issue, the resummation for Vs is then simple, because the

condition for the value of the observable to be smaller than vs factorises straightforwardly,

Θ(vs − Vs(k1, k2, . . . , kn)) ≡
n
∏

i=1

Θ(vs − V (ki)) , (2.11)

where for brevity we have dropped the Born momenta from the arguments of V .
2One could perhaps devise a collinear-safe definition which for our purposes is equivalent to the above

one. This might involve the application of a clustering algorithm to emissions before using eq. (2.10).
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To illustrate this we shall consider the class of global observables in e+e− → 2 jets.

Emissions can be taken to be independent, as shown in [2, 4], giving the following expression

for their probability distribution:

dP (k1, . . . , kn) = e−Rε
1

n!

n
∏

i=1

dηi
dk2

ti

k2
ti

dφi

2π

CFαs(kti)

π
Θ

(

ln
Q

kti
− 3

4
− |ηi|

)

, (2.12)

where kti, ηi and φi are respectively the transverse momentum, the rapidity and the az-

imuthal angle of ki with respect to the qq̄ axis. Virtual corrections are given by the factor

e−Rε , with

Rε =

∫

dη
dk2

t

k2
t

dφ

2π

CFαs(kt)

π
Θ

(

ln
Q

kt
− 3

4
− |η|

)

, (2.13)

where the ε indicates that some regularisation must be applied to both the real and vir-

tual parts. In the above formulae, the coupling is defined in the gluon Bremsstrahlung

scheme [23] and the −3/4 in the limit on the rapidity accounts for the hard part of the

Pqq collinear splitting function (see for example [4]). Combining these expressions with

eq. (2.11) gives

Σs(vs) = exp (−Rs(vs)) , (2.14)

with

Rs(vs) = CF

∫ Q2

dk2
t

k2
t

dφ

2π

αs(kt)

π

∫ ln Q
kt
− 3

4

− ln Q
kt

+ 3
4

dηΘ(V (k)− vs) . (2.15)

In processes with three hard partons the resummation of the simple variable also proves

straightforward, with Rs just involving a sum over dipoles [8]–[11]. On the other hand,

with 4 or more hard partons subtleties will arise from the large angle region as can be seen

from [24].3

2.3 The probability P (v|vs)

One of the advantages of the above choice for the ‘simple’ observable is that it is easy to

design a Monte Carlo algorithm to construct, for a given R′, an ensemble of configurations

which all have the same value of vs and known (equal) weights.

Fixing vs implies taking only those configurations where one of the emissions, j, satisfies

V (kj) = vs, and all others i 6= j satisfy V (ki) < vs. Using eq. (2.12), renumbering emissions

such that j is always 1, and dividing by the total probability of the simple variable having

value vs, we obtain the following expression for the probability distribution of configurations

given vs:

dP (k1, . . . , kn|vs) =
vs

R′s(vs)

e−Rε+Rs(vs)

(n− 1)!
× δ(vs − V (k1))

n
∏

i=2

Θ(vs − V (ki))×

×
[

n
∏

i=1

dηi
dk2

ti

k2
ti

dφi

2π

CFαs(kti)

π
Θ

(

ln
Q

kti
− 3

4
− |ηi|

)

]

, (2.16)

3Though it remains to be seen whether the extensive technology developed in [24] accounts for the

non-global effects that are to be expected for the observables that are considered there.
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where

R′s(vs) = −vs
dRs

dvs
= R′(vs) +O

(

αn
sL

n−1
)

. (2.17)

It is now straightforward to construct P (v|vs):

P (v|vs) =
∞
∑

n=1

∫

dP (k1, . . . , kn|vs) δ(V (k1, . . . , kn)− v) . (2.18)

2.4 Eliminating subleading effects

As they stand, the above expressions contain not just single-log terms but also many

(sometimes spurious) subleading contributions. For example while in eq. (2.15) the ‘3/4’

is necessary in order to obtain the correct single (NL) logs, in eq. (2.16) it leads only to

NNLL terms. These subleading terms are awkward for a variety of reasons. Firstly there is

currently no way of guaranteeing their correctness. Secondly when matching to fixed-order

predictions they lead to some technical difficulties because one needs a good knowledge of

their expansion to O
(

α2
s

)

. Finally one notes that the expressions of the previous section

contain integrals over αs(kt) down into the infrared. The Landau pole in αs (or whatever

other structure occurs in higher orders) will then introduce a power correction ambiguity

in one’s answer, requiring that one make an arbitrary non-perturbative ‘choice’ concerning

its treatment. Accordingly it has become standard to give predictions containing nothing

but leading and NL logs (though we note the alternative philosophy advocated in [25]).

Truncating the expressions for Rs and R
′ at NLL order is easy, since they are computed

analytically. However ensuring that F is purely a function of R ′, required in order for

it to have just NLL terms, turns out to be the most subtle part of our semi-numerical

resummation approach. We present two ways of doing it.

Method 1 (general). One way of eliminating subleading effects is by numerically taking

the limit of αs → 0, while keeping αs ln 1/v fixed (i.e. fixed R′). While conceptually

straightforward and very general, such an approach turns out to be numerically awkward:

the NNLL contamination in one’s answer is of order αs, and for fixed R′, ln 1/v scales

roughly as 1/αs. So if for argument’s sake we want to eliminate subleading effects to

within a percent, then we need to consider values of v of the order of 10−100 (since we are

dealing with orders of magnitude of the logarithm, we ignore the difference between e−100

and 10−100). Unfortunately standard algorithms for calculating event shapes generally

work only for v À εp where ε is the relative floating precision (usually 10−15 in double

precision) and p is some algorithm-dependent power of order 1.

So in order for this approach to work we need to find an algorithm for calculating the

observable that is free of sensitivity to the limited accuracy of the floating-point arithmetic.4

Additionally the algorithm should work with a representation of 4-momenta that does not

suffer from the limit on the smallest representable floating-point number (in standard dou-

ble precision the smallest number that can be represented is of the order of 10−308). Both

4An alternative approach, whose feasibility we have not investigated in detail, would be to use arbitrary

precision arithmetic. This would entail a significant penalty in terms of computing time needed, but might

nevertheless be an approach worthy of investigation.
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these issues restrict the generality of the approach, and imply a certain amount of analysis

of one’s observable so as to understand the elements fundamental to its determination in

terms of a set of soft and collinear momenta. This will be illustrated in detail in section 4.3

when we come to discuss the 2-jet rate for the Durham algorithm.

Method 2 (event-shape specific). Fortunately there exists a much simpler approach

which works in almost all cases. Event shapes (but not jet rates) have the following useful

property: given an ensemble of soft and collinear momenta {k1, . . . , kn}, if we vary the

{ki} such that the {V (ki)} are kept constant and the {ki} all remain collinear to the legs

to which they were originally collinear, then V ({ki}) also remains constant. In eq. (2.18)

this allows us to carry out the integration over rapidity analytically and replace it with a

sum over the different hard legs to which an emission may be collinear (in calculating F
the large-angle region gives only NNLL terms).

So we divide the phase space R′ into contributions R′` coming from N different hard

legs

R′(v) =

N
∑

`=1

R′`(v) , (2.19)

and write

dP (k̃1, . . . , k̃n|vs) =
vs

R′s(vs)

e−Rε+Rs(vs)

(n− 1)!

[

n
∏

i=1

dvi
vi

dφi

2π
R′`i(vi)

]

δ(vs − v1)

n
∏

i=2

Θ(vs − vi) ,

(2.20)

where the use of k̃i rather than ki denotes the fact that emissions are characterised by

the leg `i to which they are collinear, their azimuthal angle φi and the value of vi. The

transverse momentum and rapidity are no longer individually defined — they have been

integrated over while keeping vi constant.

To eliminate subleading logarithms, we now exploit the infrared safety of event shapes,

which implies that the emissions that contribute significantly to V ({ki}) are those for which
vi ∼ v1. Accordingly we can throw away logs of v1/vi (both in the real and virtual parts)

to get

dP (k̃1, . . . , k̃n|vs) =
vs
R′

e−R
′
∫ vs dv

v

(n− 1)!

[

n
∏

i=1

dvi
vi

dφi

2π
R′`i

]

δ(vs − v1)

n
∏

i=2

Θ(vs − vi) , (2.21)

where the R′` are all evaluated at vs. By truncating their analytical expressions at SL level,

we obtain an answer for dP (. . . |vs) that has only single logarithmic dependence on vs.

Finally to get the equivalent of eq. (2.18) we have to remember not only to integrate over

the φi and vi but also to sum over all the `i:

p

(

v

vs
, R′
)

= v

∞
∑

n=1

∫

∑

`1,..., `n

dP (k̃1, . . . , k̃n|vs) δ(V (k̃1, . . . , k̃n)− v) . (2.22)

We have written the answer for p(v/vs, R
′) rather than for P (v|vs) so as to emphasise

that we are free to choose vs as we like, and that the result is a function only of v/vs
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and R′, free of subleading logarithms (we recall that at NLL order, R ′ itself depends only

on αsL). In practice there is still some contamination from power suppressed contributions

associated with the observable itself, terms of relative order vqs , with q some observable

dependent power of order 1. However it is usually perfectly feasible to choose values of vs
such that vqs ¿ 1, while keeping the relative rounding errors associated with the numerical

calculation of the observable, εp/vs, also negligible.

For the calculations whose results are given below, the following Monte Carlo algo-

rithm has been used to generate configurations according to the probability distribution in

eq. (2.21). One starts with i = 1 and y1 = 1, then:

1. One chooses a leg `i randomly, the probability of leg ` being R′`/R
′.

2. One chooses uniformly a random azimuthal angle, φi, with respect to the leg.

3. One then chooses the transverse momentum kti and rapidity ηi with respect to the

leg, such that the emission is soft, collinear and satisfies V (ki) = yivs. Within

these constraints one has total freedom in one’s choice of transverse momentum and

rapidity.

4. One chooses ln yi+1 such that yi+1 < yi, with a random distribution proportional

to (yi+1/yi)
R′

reflecting the fact that the phase space to produce an emission with

yvs < Vk < (y + δy)vs is R′δy/y.

5. If yi+1 < ε¿ 1, with ε some arbitrary small cutoff, one stops. Otherwise one replaces

i→ i+ 1 and goes back to step 1.

2.5 The coefficient of R′
2

For the purposes of matching with fixed order calculations it is necessary to have the

expansion of F(R′) in powers of R′

F(R′) = 1 +

∞
∑

n=1

FnR
′n , (2.23)

(from which one can deduce the expansion in terms of powers of αsL). Since matching is

currently usually carried out to NL order one needs the first two terms. As a consequence

of our definition of the ‘simple’ observable, the first term is automatically zero. The second

term can be obtained by expanding eqs. (2.7) and (2.22) to give

F2 = −
∑

`1, `2

(

lim
αsL→0

R′`1R
′
`2

R′2

)
∫

dφ1dφ2

(2π)2

∫ vs dv2

v2
ln
V (k̃1, k̃2)

vs
, V (k̃1) = vs . (2.24)

We specify the limit R′ → 0 for the ratio of R′`/R
′ because for some more complicated

observables, such as τzE in DIS [5], R′`/R
′ is not a pure number but rather itself a function

of R′. We also note that despite the appearance of vs in the integral, F2 is of course

independent of vs.

Finally we point out that if necessary (e.g. for NNLO matching) one can in a similar

way derive corresponding expressions for yet higher order terms in the expansion of F .
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Figure 1: F(R′) for the thrust and the two broadenings. The lines are the analytical results, while

the points are the numerical results.

3. Reproducing known results

An important test of our method is that it reproduces known analytical results. This section

shows results for a variety of previously calculated observables in configurations with 2 and

3 hard jets. For definitions of the observables, the reader is referred to appendix B.

3.1 e+e− → 2 jets: thrust and broadenings

Here we recover the known results for the thrust T and the jet broadenings (total BT and

wide BW ). In each case we have tested both methods for the elimination of subleading

logs (section 2.4) and verified that they give identical results.

For the thrust distribution the ‘simple’ observable is given by

τs ≡ max
i

{

kti
Q
e−|ηi|

}

, (3.1)

The lowest line of figure 1 shows the comparison between the function Fτ and the corre-

sponding exact result [1],

Fτ (R
′) =

e−γER′

Γ(1 +R′)
. (3.2)

In the broadening case we start from

Bs ≡ max
i

|~kti|
Q

. (3.3)
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The Monte Carlo procedure gives BL and BR (see (B.5)) and then BT and BW (see (B.6)).

The comparison between numerical and analytical resummation [4],

FBT
(R′) =

e−γER′

Γ(1 +R′)

(

∫ ∞

1

dx

x2

(

1 + x

4

)−R′/2
)2

,

FBW
(R′) =

e−γER′

Γ2(1 +R′/2)

(

∫ ∞

1

dx

x2

(

1 + x

4

)−R′/2
)2

, (3.4)

is given by the top two lines of figure 1.

3.2 e+e− → 3 jets: thrust minor (a.k.a. Kout)

The procedure can also be applied to multi-jet event shapes, such as Tm and D parameter,

which have been studied recently in the near-to-planar three-jet region [8, 9]. In particular,

we would like to compare the numerical results to the analytical resummation of Tm dis-

tribution, which is much more involved than that of the D parameter due to hard parton

recoil effects.

In the near to planar three-jet region T ∼ TM À Tm, a three-jet event consists of a

hard quark-antiquark-gluon system accompanied by soft secondary partons. We denote

the hard partons by p1, p2 and p3 with p0
1 > p0

2 > p0
3 and call δ = 1, 2, 3 the configuration

in which the gluon momentum is pδ. As discussed in [8], the function FTm(R
′) depends on

the colour configuration of the hard underlying system.

The simple observable Tm,s is determined by (2.10). In terms of soft parton momenta

this gives Tm,s = maxi{Ni|kix|/Q}, where kix is the out-of-event-plane momentum com-

ponent of emitted parton i and, due to the recoil kinematics, Ni is 4 or 2 respectively

according to whether or not emission i is in the same hemisphere as the most energetic

hard parton (as was shown in [8] and can easily be determined numerically as well as

analytically).

The analytical result for F (δ)
Tm

(R′) has been computed in [8].5 We do not reproduce

here its explicit form, since its various components involve up to as many as five nested

integrals, but we plot in figure 2 the analytical results as a function of R ′ together with

F (δ)
Tm

obtained using the numerical procedure.

4. New results

We now exploit our method to compute the function F for some observables for which

an analytical expression for the resummed PT distribution has not so far been found: the

thrust major, the oblateness and the Durham three-jet resolution. In the first two cases

we suspect that it may not even be possible to find analytical expressions.

5Note that in [8] F represented a different quantity.
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Figure 2: F (δ)(R′) for the thrust minor distributions in the three different colour configurations.

The lines indicate the analytical results, while the points are the numerical results.

4.1 Thrust major

The thrust major, TM , is defined in (B.2). In order to compute FTM we have as the ‘simple’

observable

TM,s ≡ 2 ·max
i

|~kti|
Q

. (4.1)

Our numerical procedure gives the function FTM (R′) shown in figure 3. The resummed

TM distribution is then given by (2.8), where Σs(TM ), defined generally in (2.14), is

Σs(TM ) = e−Rs(TM/2) = e−Rs(TM )e−R
′ ln 2 ,

Rs(TM ) = 2CF

∫ Q2

T 2
MQ2

dk2
t

k2
t

αs(kt)

π

(

ln
Q

kt
− 3

4

)

, (4.2)

i.e. it is expressed in terms of a radiator, Rs(TM ), which is identical to that for BT and BW .

Its analytical expression to SL accuracy has been already computed in [2] and is recalled

in appendix C.1.

We then match the above resummed result (using the logR-matching scheme [1]) with

the exact O
(

α2
s

)

results computed with EVENT2 [16], to give the curve shown in figure 4.

4.2 Oblateness

The ‘simple’ observable (4.1) can be also exploited to compute F(R ′) for the oblateness,

defined as the difference between the thrust major and the thrust minor (see (B.4)).

The function F(R′) for the oblateness (also shown in figure 3) behaves quite differently

from that for the other variables considered so far, since it increases rather than decreases

with increasing R′.
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Figure 4: The full SL-resummed distributions for the thrust major and the oblateness including

second order matching (logR-scheme), shown for
√
s = MZ .

There is a simple reason for this difference. For most variables, adding an extra

emission to the ensemble can only increase the value of the observable, largely because

most observables essentially involve a sum of positive definite quantities.

The oblateness is unusual in that it is a difference of two quantities. For a single

emission the thrust minor is zero and so the oblateness is equal to the thrust major. But

as soon as one considers a second emission, there exist configurations for which the thrust

minor is almost equal to the major, leading to a value for the oblateness which is smaller

than that of the simple observable.
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Figure 5: Distribution of the value of v/vs for the oblateness and the thrust major.

This is illustrated in figure 5 which shows the probability distribution for the ratio of

the true variable to the simple one, for both the thrust major and the oblateness. The

thrust major exhibits a sharp cutoff for v/vs < 1. The oblateness on the other hand has

a roughly power-like tail extending to arbitrarily small values of v/vs, originating from

events with nearly identical major and minor projections. Since eq. (2.7) involves the ratio

(v/vs)
−R′

, if a sufficient fraction of events has v < vs, then F(R′) can be larger than 1.

However F being larger than one is not the only consequence of the tail at small v/vs:

if R′ is too large then the factor (v/vs)
−R′

can completely compensate the smallness of

P (v|vs), and the integral (2.4) then diverges. The start of this divergence is clearly visible

for the oblateness in figure 3. We shall refer to the position of the divergence as R ′c.

In the case of the oblateness, simple considerations based on two-gluon configurations

suggest that R′c = 2, corresponding to a tail of vP (v|vs) proportional to (v/vs)
2. This does

not quite correspond to what is seen in figure 5, and it is not clear whether the actual

vP (v|vs) has a different power for the tail, or simply some extra logarithmic enhancement.

We emphasise that the divergence in F is not a particularity of our approach. Recently

for example, such a problem has been extensively discussed in the context of the jet broad-

ening in DIS [6], and it is in general present for all observables which can have zero value

even in the presence of emissions. Physically, what happens is that for R ' R ′c there is a

transition from the normal double-log Sudakov suppression to some other behaviour (e.g.

a suppression proportional to v2). Such a transition is beyond representation in terms of a

pure SL function, leading to a breakdown in the hierarchy of leading and subleading logs.

This is seen for example in the fact that NNLL terms are even more strongly divergent

that the NLL ones. In analytical resummation approaches, with considerable extra work,

it is sometimes possible to include an appropriate subset of subleading terms so as to bring

the answer back under control over the whole range of the R′.
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On the other hand as long R′c −R′ is of order one (formally À √αs) it can be shown

that the divergence can be ignored [6]. Therefore, so as to be sure of remaining in the region

under control, we suggest that the oblateness distribution be studied only for R ′(O) < 1.

This is illustrated in figure 4, which shows the full resummed matched distribution for the

oblateness (based on an expression analogous to (4.2)). The point R ′ = 1 is just to the

right of the peak region — accordingly, it should be possible to compare most, though not

all the data with the resummed predictions.

4.3 Durham three-jet resolution

Now we wish to calculate the multiple emission single-logs for the distribution of the three-

jet resolution parameter, y3, in the Durham algorithm (the corresponding integrated dis-

tribution is also referred to as the two-jet rate). The leading logs, and some subleading logs

(those necessary for NLL accuracy in the exponentiated answer rather than the exponent)

were calculated in [13]. The NL logs associated with the appropriate scheme choice for

αs were given in [14]. However those coming from the non-trivial dependence on multiple

emissions have yet to be calculated.

Jet rates differ from most event shapes in that they do not satisfy item 3 of the

conditions for applicability given in appendix A, which was required for a straightforward

elimination of subleading logarithms, using the event-shape specific method of section 2.4.

This condition was that V ({ki}) should stay invariant under certain transformations of the

ki which kept the {V (ki)} constant. It allowed phase-space integrations over rapidity to

be carried out analytically.

Nevertheless we can still use the ‘general’ method for the elimination of subleading logs,

as outlined in section 2.4. It requires that we be able to evaluate the observable accurately

even when it takes values much smaller than the smallest machine representable (double

precision) floating point number, so that we can take the limit αs → 0 with constant αsL

(which implies L→∞).

It turns out that to succeed in doing this (without recourse to arbitrary precision

arithmetic) we must carry out an analytical analysis of the observable’s dependence on

multiple soft and collinear emissions. One might raise the criticism that this negates the

philosophy of our numerical approach. Such a criticism would be only partially justified

since in a traditional resummation approach once one has determined this dependence, one

still has to understand what transformations are needed in order to write it in a factorised

form (cf. the discussion in the introduction), and then one has to carry out the inverse

transformations, both operations involving considerable work.

4.3.1 Soft and collinear analysis

It is useful to start by recalling the definition of the Durham jet finding algorithm [26],

given in terms of a resolution parameter ycut as follows:

1. For all pairs of (pseudo)particles i, j calculate

yij =
2min(E2

i , E
2
j )(1− cos θij)

Q2
. (4.3)
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2. If all yij > ycut stop. The number of jets is then defined to be equal to the number

of (pseudo)particles left.

3. Otherwise recombine the pair with the smallest yij into a single pseudoparticle (there

are various schemes according to whether one wants the recombined particle to be

massless, see for instance [27]).

4. Go back to step 1.

The three-jet resolution parameter, y3, is the maximum value of ycut that leads to a 3-jet

event.

To understand the soft and collinear limit of our observable, we shall suppose that we

have an event with hard partons a and b and soft-collinear partons 1 . . . n. To start with

we should examine the value of the yij for different kinds of pairings of particles:

• If i and a are in the same hemisphere yia ' E2
i θ

2
i ' k2

ti.

• If i and j are in different hemispheres then yij ' 4E2
<, where E< = min(Ei, Ej).

• If i and j are in the same hemisphere then yij ' E2
<|~θi − ~θj|2, where we define the

angles as vectors in the transverse directions.

In these relations we have defined ~θi to be the angle between parton i and its nearest hard

parton (the vector indicates the azimuthal direction), and kti to be the relative transverse

momentum. The centre of mass energy Q is taken to be 1.

To determine the value of y3 for an arbitrary ensemble of soft and collinear particles

it is beneficial to start first with some simple cases: if we have just a single emission then

y3 = k2
t of that emission (hence the alternative name — kt algorithm).

Now let us consider two emissions, labelled 1 and 2. We take kt1 > kt2, the non-trivial

case being when kt2 and kt1 are however of the same order. We shall assume that the two

emissions are widely separated in rapidity, as is appropriate when considering only NLL

terms. There are then four relevant configurations, illustrated in figure 6:

i) If 1 and 2 are in opposite hemispheres (as in figure) then y12 = 4min(E2
1 , E

2
2 ) À

y1a > y2b, so parton 2 gets recombined with b. Since now the only soft-collinear

parton left is 1 we get y3 = k2
t1.

ii) If 1 and 2 are in the same hemisphere (say the hemisphere of a) and θ1 À θ2 (which

implies E1 ¿ E2), then we get y12 ' y1a = k2
t1, while y2a = k2

t2 which is smaller. So

once again parton 2 recombines with a hard parton and we are left with just parton

1, which then leads us to y3 = k2
t1.

iii) If 1 and 2 are in the same hemisphere (again the hemisphere of a), but θ1 ¿ θ2 (which

implies E1 À E2), then we have y12 ' y2a = k2
t2, while y1a = k2

t1 which is larger.

So the recombination that will take place is either 12 or a2. Which one depends on

whether |~θ2 − ~θ1|2 > θ2
2. If ~θ1 · ~θ2 < 0 then the inequality is satisfied, and we have a

a2 recombination, so that just as before y3 = k2
t1.
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Figure 6: Representation of the clustering in the Durham algorithm, for various configurations.

Both gluons are soft and collinear, with kt1 > kt2 but of the same order. When they are in the

same hemisphere, their angles are assumed to be strongly ordered (though for clarity only weak

ordering is represented in the figure). The hoop indicates which pair of particles clusters first.

iv) If 1 and 2 are in the same hemisphere and θ1 ¿ θ2, as in iii), but with ~θ1 · ~θ2 > 0,

then y12 < y2a and (at last a non trivial result!) we recombine partons 1 and 2. This

gives us a pseudoparticle with the energy of parton 1 (recall E1 À E2) and squared

transverse momentum k2
tp = |~kt1 + ~kt2|2. The value of y3 is then just set by the k2

tp

of the pseudoparticle. We note that since ~θ1 · ~θ2 > 0, ktp is always larger than kt1.

We can see from this analysis that item 3 of the conditions for applicability in appendix A

is violated: exchanging the rapidities of the two gluons, while keeping their transverse

momenta and azimuths constant (i.e. exchanging configurations ii and iv), leads to a change

in the value of y3.

The above two-gluon analysis also points the way to a general algorithm suitable for

taking the limit of very small values of y3. In order to be able to represent all quantities

on a computer in standard double precision we work in terms of rapidities ηi and rescaled

transverse momenta κi = kti/maxj{ktj}. We further assume (as is appropriate at NLL

order) that particles are all widely separated in rapidity from one another. The y3 value

for the Durham jet algorithm can then be determined as follows:

1. Find the index I of the smallest of the {κi}.

2. Considering only the soft partons j in the same hemisphere as I and which satisfy

~κI · ~κj > 0, find the index J of the one with the smallest positive value of |ηj | − |ηI |.
If there are no soft partons j with both ~κI · ~κj > 0 and |ηj | > |ηI |, then let J = a or

b, according to which is the collinear hard parton.

3. If J = a or J = b then just throw away parton I. Otherwise recombine I and J

as follows: the rapidity ηp of the pseudoparticle is just set to ηJ (this involves a

mistake on ηp by an additive amount of order 1 — but that is subleading), while its

transverse momentum is the vector sum, ~κp = ~κI +~κJ . At NLL order, this procedure

is appropriate for all standard recombination schemes.
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4. If only one soft pseudoparticle remains, P , then y3/maxj{k2
tj} = κ2

P . Otherwise go

back to step 1.

4.3.2 Numerical results

Using the above algorithm for calculating y3 at arbitrarily small values we can now nu-

merically determine the function Fy3
(R′). The results are shown in figure 3 together with

those for the thrust major and the oblateness.6

For phenomenology one also needs to know the resummation for the simple observable

related to y3. Since y3s is just the (normalised) squared transverse momentum, y3s =

k2
t /Q

2, we have from (2.14) and (2.15) that

Σs(y3) = e−Rs(y3) , Rs(y3) = CF

∫ Q2

y3Q2

dk2
t

k2
t

αs(kt)

π

(

ln
Q2

k2
t

− 3

2

)

. (4.5)

This corresponds to what was calculated in [14], which contains the explicit NLL form for

the result of the integration. The full NLL resummed prediction for the Durham y3 can

then be obtained from (2.8), with Fy3
(R′) as shown in figure 3.

For completeness, in figure 7 we show the final perturbative result for the NLL re-

summed Durham y3 distribution, matched to the NLO fixed order results. We choose here

as a recombination scheme the E0 scheme (see for instance [27]), in which the energy of the

recombined pseudo-particle equals the sum of the energies of the two (pseudo)-particles,

while the three-momentum is rescaled so as to keep pseudo-particles massless. Choos-

ing a different recombination scheme will affect only the large y3 region and subleading

logs. In the same figure we also show the matched resummed curve for the Cambridge

algorithm [28], which is also in the ‘family’ of kt algorithms — however it has a different

clustering sequence which leads to the property that for emissions widely separated in ra-

pidity, the y3 value is simply the maximum of the emitted squared transverse momenta.7

As a consequence F(R′) = 1, so that the full resummed distribution is simply given by Σs.

5. Conclusions

In this paper we have presented a general method for the numerical calculation of the only

non-trivial class of next-to-leading logarithms in (global) event shapes. For most event

shapes it means that the calculation of the resummed distribution (in the n-jet limit for

an observable which has non-zero values only for ensembles of n+1 or more particles) can

be reduced to the following three tasks:

6We note that the above analysis also makes it quite simple to determine F2 analytically:

F2 = −
1

4

∫ π/2

−π/2

dφ

2π

∫ k2

t1

0

dk2
t2

k2
t2

log
k2
t1 + k2

t2 + 2kt1kt2 cos φ

k2
t1

= −
π2

32
, (4.4)

where the leading factor of 1/4 comes because only a quarter of the time are the particles in the same

hemisphere with θ1 ¿ θ2.
7We would like to thank Yu.L. Dokshitzer and B.R. Webber for bringing this to our attention.
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Figure 7: The full SL-resummed distributions for the Durham and Cambridge three-jet resolution

y3 including second order matching (logR-scheme).

• The evaluation of the dependence of the observable on a single soft and collinear

emission.

• The calculation of a resummed distribution, Σs, based on that single-emission de-

pendence, through eqs. (2.14) and (2.15) (or their extensions in situations with more

than two hard ‘legs’, and/or incoming hadrons).

• The provision of a computer subroutine which calculates the value of the observable

for an arbitrary set of four-momenta. One can then use the algorithm of this paper

to determine a single logarithmic function F(R′) which accounts for the observable’s

non-trivial dependence on multiple emissions, and multiplies Σs to give the resummed

distribution to full NLL accuracy.

The method thus provides both a very simple, but also general way of obtaining NLL

resummed distributions for final-state observables.

As a cross check, it has been tested against a range of previously studied observables

(including some in processes other than e+e−, which for brevity we have not shown here,

but which are listed at the end of appendix B), and consistently reproduces the known

analytical results.

It has also been applied to observables that up to now had proved beyond the scope

of existing analytical methods, allowing us to present the first fully NLL resummed distri-

butions for the thrust major, the oblateness and the three-jet resolution y3 in the Durham

algorithm. For the three-jet resolution some analytical analysis was required in order to

provide a subroutine capable of giving an accurate evaluation of y3 even in the limit of

very small y3. That analysis also has some intrinsic interest for the light it casts on the

functioning of the Durham jet algorithm.
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It should be emphasised that the philosophy of the approach presented here differs

entirely from that of a Monte Carlo event generator (such as Herwig [29] or Pythia [30]).

An event generator may well reproduce many of the leading and subleading logarithms for

event shape distributions, however even at parton level there will also be contamination

from potentially spurious NNLL and non-perturbative terms, and it is not currently possible

to match to exact next-to-leading order calculations.

On the other hand the results produced by our algorithm are indistinguishable from

those of fully analytical methods, allowing the same procedures of truncation at pure LL

and NLL terms, and straightforward matching to fixed leading and NLO calculations.

As such, our method is an essential development should one wish at some stage to fully

automate the calculation of resummed distributions, in a manner analogous to what has

become standard for fixed-order predictions of non-inclusive observables.
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A. Conditions for applicability

Various steps in this article rely on the observable under consideration being ‘suitable’.

Here we attempt to define what is meant by this. The first two conditions are required for

the exponentiation of the double logarithms. The third condition is specific to the second

(event-shape specific) method for eliminating subleading effects (discussed in section 2.4):

1. If one is resumming from a Born level consisting of n coloured hard partons (in-

coming or outgoing), then for any configuration consisting of just n hard partons the

observable must have a constant value V0 independent of the hard configuration. Fur-

thermore for a general configuration of n+ 1 hard partons the observable must have

a value different from V0. Without loss of generality, one can redefine the observable

such that V0 = 0.

So for example, we can consider the thrust in the 2-jet limit, or the thrust minor in

the 3-jet limit, but not the thrust-minor in the 2-jet limit, nor the thrust in the 3-jet

limit.

2. If we selectm soft, collinear momenta (with respect to any of the n hard partons) such

that V (k1) ∼ V (k2) ∼ · · · ∼ V (km), then the observable must satisfy the condition

V (k1, . . . , km) ∼ V (k1). This is necessary in order for the double logarithms to

exponentiate, and excludes for example observables based on the JADE jet-clustering

algorithm [31].

3. Given m soft and collinear (SC) partons, the value of the observable V (k1, . . . , km)

must remain unchanged (to within corrections of relative order of the softness or
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collinearity) if we vary the rapidity and absolute transverse momentum (but not the

azimuth) of any of the m SC partons subject to the following restrictions:

• the V (ki) are all kept constant;

• each SC parton remains collinear to the hard parton to which it was originally

collinear.

This condition is necessary if one is to use method 2 of section 2.4 for the elimination

of subleading logs. We note that in general it is satisfied by event shapes, but not

for example by the jet rate with the Durham algorithm.

In addition to the above conditions, we note that for the simple observable to have a

straightforward resummation in terms of independent emissions (cf. eqs. (2.12), (2.14)

and (2.15)) it is necessary that it be global [12].

B. Definition of observables

For completeness we recall here the definition of all the event shape variables that we refer

to in the main text (except for y3 whose definition is explicitly needed in section 4.3 and

so is directly given there).

• Thrust T , Thrust major TM , Thrust minor Tm, Oblateness O

The thrust is defined as

T =
1

∑

i |~pi|
max

~n

∑

i

|~pi · ~n| , (B.1)

where ~pi are the three-momenta of the outgoing particles. The thrust axis is the unit

vector ~nT which maximises the sum in (B.1) and gives therefore the direction along

which the projection of momenta is maximal.

The thrust major is then defined similarly, but the maximisation procedure is re-

stricted to unit vectors perpendicular to ~nT

TM =
1

∑

i |~pi|
max

~n·~nT=0

∑

i

|~pi · ~n| . (B.2)

The vector ~nTM which maximises the sum in (B.2) defines the thrust major axis.

Given the thrust and the thrust major axes, the thrust minor is defined as

Tm =
1

∑

i |~pi|
∑

i

|~pi · ~nTm | , ~nTm = ~nT × ~nTM , (B.3)

and the oblateness as

O = TM − Tm . (B.4)
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• The broadenings:
The broadenings measure the transverse size of the jets. The plane perpendicular

to the thrust axis through the origin divides an event in two hemispheres, which are

usually called left (L) and right (R) hemisphere. One defines first the right (BR) and

left broadening (BL) as

BR/L =
1

2
∑

i |~pi|
∑

i∈R/L

|~pti| , (B.5)

with ~pti = ~pi × ~nT .

One can then define the total (BT ) and wide (BW ) jet broadening as

BT = BR +BL ,

BW = max{BR, BL} . (B.6)

As well as having been applied to the observables defined above, our method has also

been successfully tested against known analytical results for several other variables: the D-

parameter in 3-jet e+e− events [9], the current-jet broadening (with respect to the photon

axis) in 1 + 1-jet DIS events [6], the out-of-plane momentum in 2 + 1-jet DIS events [11]

and the out-of-plane momentum for W/Z + jet events in hadron-hadron collisions [10].

C. Analytical ingredients

Here we summarise all the analytical ingredients needed for the calculation of the resummed

distributions of the three observables studied in section 4. This means NLL expressions for

the simple radiators and derivatives (the formulae are all well known in the literature), as

well as the fixed order expansions.

Computer subroutines which interpolate tabulated numerical values for the functions

F(R′) are available on request from the authors, as are example programs for calculating

the complete resummed, matched distributions.

C.1 Thrust major and oblateness

For the thrust major and oblateness, the simple radiator, Rs (defined in (4.2)) is given to

NLL order by Rs(v) = −Lgs1(αsL)− gs2(αsL) with

−gs1(αsL) =
CF

πβ0λ
(−2λ− ln(1− 2λ)) , (C.1)

and

−gs2(αsL) =
3CF

2πβ0
ln(1− 2λ) +

CFK

2π2β2
0

2λ+ (1− 2λ) ln(1− 2λ)

1− 2λ
+

+
CFβ1

πβ3
0

(

−2λ+ ln(1− 2λ)

1− 2λ
− 1

2
ln2(1− 2λ)

)

, (C.2)
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G12 =−4CF

G11 =CF (6− 8 ln 2)

C1 =CF

(

6 ln 2− 4 ln2 2 + π2 − 17

2

)

G23 =−CF

(

88

9
CA −

32

9
TRnf

)

G22 =CF

(

64F2CF +

(

2

3
π2 − 35

9
− 88

3
ln 2

)

CA +

(

4

9
+

32

3
ln 2

)

TRnf

)

Table 1: Logarithmic coefficients Gnm and the constant C1 for thrust major and oblateness; for

TM one has F2 = −0.46851± 0.00017, for the oblateness F2 = 0.37799± 0.00029.

Fit-range G21 C2

[−9;−5] −20.3± 2.5 154.0 ± 14.8

[−8;−5] −20.7± 3.3 156.2 ± 19.3

[−9;−6] −21.0± 2.9 160.4 ± 19.2

−20.6± 2.9 156.9 ± 18.1

a) Thrust Major

Fit-range G21 C2

[−8;−4] 75.3 ± 1.0 166.1 ± 4.6

[−7;−4] 75.6 ± 1.1 164.9 ± 5.3

[−8;−5] 70.8 ± 2.9 191.6 ± 16.5

73.9 ± 3.5 174.2 ± 19.5

b) Oblateness

Table 2: Fits of G21 and C2 for the thrust major and the oblateness.

where λ = αsβ0L and L = ln 1/v. The coefficients of the β-function are given by

β0 =
11CA − 2nf

12π
, β1 =

17C2
A − 5CAnf − 3CFnf

24π2
, (C.3)

and the constant relating the gluon Bremsstrahlung scheme [23] to the MS is

K = CA

(

67

18
− π2

6

)

− 5

9
nf . (C.4)

Also useful is the formula for R′ (at NLL equal to R′s):

R′(v) ≡ d

dL
(Lgs1(αsL)) =

CF

πβ0

4λ

1− 2λ
. (C.5)

For matching to fixed order calculations, it is necessary to have the coefficients of the

fixed order expansion of the full resummed distribution. They are given in table 1, using

the notation of [1].

Tables 2a and 2b show the two subleading coefficients G21 and C2 for the thrust

major and the oblateness respectively. They are obtained from the fixed order integrated

distribution (calculated with EVENT2 [16]) after subtracting the leading and next-to-

leading logs. The final errors shown are obtained by adding in quadrature the mean error

and the maximal discrepancy between the mean coefficient and the coefficient obtained in

a single fit. The errors are to be considered as indicative only, because of the difficulty in

estimating the systematic uncertainty associated with the choice of fit range.
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G12 =−CF

G11 =3CF

C1 =CF

(

−6 ln 2 + π2

6
− 5

2

)

G23 =−CF

(

11

9
CA −

4

9
TRnf

)

G22 =CF

(

4F2CF +

(

1

6
π2 − 35

36

)

CA +
TRnf

9

)

Table 3: Logarithmic coefficients Gnm and the constant C1 for the three-jet resolution parameter.

In the Durham algorithm F2 = −π2/32, while in the Cambridge algorithm F2 = 0.

Fit-range G21 C2

[−13;−8] −7.4± 0.1 19.3 ± 1.0

[−13;−9] −7.0± 0.1 15.8 ± 1.3

[−12;−8] −7.4± 0.1 19.4 ± 1.1

−7.2± 0.3 18.2 ± 2.6

a) Durham

Fit-range G21 C2

[−13;−8] 1.9± 0.1 −30.5 ± 1.2

[−13;−9] 2.3± 0.2 −34.1 ± 1.6

[−12;−8] 1.9± 0.2 −30.3 ± 1.4

2.1± 0.3 −31.6 ± 2.9

b) Cambridge

Table 4: The coefficients G21 and C2 for the three-jet resolution in the Durham and Cambridge

algorithms.

C.2 Three-jet resolution

For the Durham (and Cambridge) three jet resolution parameter, the simple radiator, Rs,

defined in (4.5), is given to NLL order by Rs(v) = −Lgs1(αsL)− gs2(αsL) with

−gs1(λ) =
CF

πβ0λ
[−λ− ln (1− λ)] , (C.6)

−gs2(λ) =
3CF

2πβ0
ln(1− λ) +

KCF [λ+ (1− λ) ln(1− λ)]

2π2β2
0(1− λ)

+

+
CFβ1

πβ3
0

[

−λ+ ln(1− λ)

1− λ
− 1

2
ln2 (1− λ)

]

, (C.7)

and, as before, λ = αsβ0L. R
′ is given by

R′ =
CF

πβ0

λ

1− λ
. (C.8)

The coefficients of the fixed order expansion of the resummation are given in table 3.

From fixed order results we also extract the subleading coefficients, shown in tables 4a

and 4b for the Durham and Cambridge algorithms respectively. We follow the same fit

procedure as for the thrust major and the oblateness. Note that these coefficients are ob-

tained in the E0-scheme (see for example [27]), and that choosing a different recombination

scheme will affect their value.
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