51,961 research outputs found
Role of heating and current-induced forces in the stability of atomic wires
We investigate the role of local heating and forces on ions in the stability
of current-carrying aluminum wires. We find that heating increases with wire
length due to a red shift of the frequency spectrum. Nevertheless, the local
temperature of the wire is relatively low for a wide range of biases provided
good thermal contact exists between the wire and the bulk electrodes. On the
contrary, current-induced forces increase substantially as a function of bias
and reach bond-breaking values at about 1 V. These results suggest that local
heating promotes low-bias instabilities if dissipation into the bulk electrodes
is not efficient, while current-induced forces are mainly responsible for the
wire break-up at large biases. We compare these results to experimental
observations.Comment: 4 pages, 4 figure
The Orbifolds of N=2 Superconformal Theories with c=3
We construct Z_M, M= 2, 3, 4, 6 orbifold models of the N=2 superconformal
field theories with central charge c=3. Then we check the description of the
Z_3, Z_4 and Z_6 orbifolds by the N=2 superconformal Landau-Ginzburg models
with c=3, by comparing the spectrum of chiral fields, in particular the Witten
index Tr(-1)^F.Comment: 20 pages; typos corrected, references adde
Phase-change chalcogenide glass metamaterial
Combining metamaterials with functional media brings a new dimension to their
performance. Here we demonstrate substantial resonance frequency tuning in a
photonic metamaterial hybridized with an electrically/optically switchable
chalcogenide glass. The transition between amorphous and crystalline forms
brings about a 10% shift in the near-infrared resonance wavelength of an
asymmetric split-ring array, providing transmission modulation functionality
with a contrast ratio of 4:1 in a device of sub-wavelength thickness.Comment: 3 pages, 3 figure
Light Quasiparticles Dominate Electronic Transport in Molecular Crystal Field-Effect Transistors
We report on an infrared spectroscopy study of mobile holes in the
accumulation layer of organic field-effect transistors based on rubrene single
crystals. Our data indicate that both transport and infrared properties of
these transistors at room temperature are governed by light quasiparticles in
molecular orbital bands with the effective masses m* comparable to free
electron mass. Furthermore, the m* values inferred from our experiments are in
agreement with those determined from band structure calculations. These
findings reveal no evidence for prominent polaronic effects, which is at
variance with the common beliefs of polaron formation in molecular solids.Comment: 4 pages, 4 figure
Shrinking Point Bifurcations of Resonance Tongues for Piecewise-Smooth, Continuous Maps
Resonance tongues are mode-locking regions of parameter space in which stable
periodic solutions occur; they commonly occur, for example, near Neimark-Sacker
bifurcations. For piecewise-smooth, continuous maps these tongues typically
have a distinctive lens-chain (or sausage) shape in two-parameter bifurcation
diagrams. We give a symbolic description of a class of "rotational" periodic
solutions that display lens-chain structures for a general -dimensional map.
We then unfold the codimension-two, shrinking point bifurcation, where the
tongues have zero width. A number of codimension-one bifurcation curves emanate
from shrinking points and we determine those that form tongue boundaries.Comment: 27 pages, 6 figure
Interference Effects, Time Reversal Violation and Search for New Physics in Hadronic Weak Decays
We propose some methods for studying hadronic sequential two-body decays
involving more spinning particles. It relies on the analysis of T-odd and
T-even asymmetries, which are related to interference terms. The latter
asymmetries turn out to be as useful as the former ones in inferring time
reversal violating observables; these in turn may be sensitive, under some
particular conditions, to possible contributions beyond the standard model. Our
main result is that one can extract such observables even after integrating the
differential decay width over almost all of the available angles. Moreover we
find that the correlations based exclusively on momenta are quite general,
since they provide as much information as those involving one or more spins. We
generalize some methods already proposed in the literature for particular decay
channels, but we also pick out a new kind of time reversal violating
observables. Our analysis could be applied, for example, to data of LHCb
experiment.Comment: 35 page
Influence of an external magnetic field on the decoherence of a central spin coupled to an antiferromagnetic environment
Using the spin wave approximation, we study the decoherence dynamics of a
central spin coupled to an antiferromagnetic environment under the application
of an external global magnetic field. The external magnetic field affects the
decoherence process through its effect on the antiferromagnetic environment. It
is shown explicitly that the decoherence factor which displays a Gaussian decay
with time depends on the strength of the external magnetic field and the
crystal anisotropy field in the antiferromagnetic environment. When the values
of the external magnetic field is increased to the critical field point at
which the spin-flop transition (a first-order quantum phase transition) happens
in the antiferromagnetic environment, the decoherence of the central spin
reaches its highest point. This result is consistent with several recent
quantum phase transition witness studies. The influences of the environmental
temperature on the decoherence behavior of the central spin are also
investigated.Comment: 29 preprint pages, 4 figures, to appear in New Journal of Physic
Polar catastrophe and electronic reconstructions at the LaAlO3/SrTiO3 interface: evidence from optical second harmonic generation
The so-called "polar catastrophe", a sudden electronic reconstruction taking
place to compensate for the interfacial ionic polar discontinuity, is currently
considered as a likely factor to explain the surprising conductivity of the
interface between the insulators LaAlO3 and SrTiO3. We applied optical second
harmonic generation, a technique that a priori can detect both mobile and
localized interfacial electrons, to investigating the electronic polar
reconstructions taking place at the interface. As the LaAlO3 film thickness is
increased, we identify two abrupt electronic rearrangements: the first takes
place at a thickness of 3 unit cells, in the insulating state; the second
occurs at a thickness of 4-6 unit cells, i.e., just above the threshold for
which the samples become conducting. Two possible physical scenarios behind
these observations are proposed. The first is based on an electronic transfer
into localized electronic states at the interface that acts as a precursor of
the conductivity onset. In the second scenario, the signal variations are
attributed to the strong ionic relaxations taking place in the LaAlO3 layer
The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM
We provide an analytic formula for the (rescaled) one-loop scalar hexagon
integral with all external legs massless, in terms of classical
polylogarithms. We show that this integral is closely connected to two
integrals appearing in one- and two-loop amplitudes in planar
super-Yang-Mills theory, and . The derivative of
with respect to one of the conformal invariants yields
, while another first-order differential operator applied to
yields . We also introduce some kinematic
variables that rationalize the arguments of the polylogarithms, making it easy
to verify the latter differential equation. We also give a further example of a
six-dimensional integral relevant for amplitudes in
super-Yang-Mills.Comment: 18 pages, 2 figure
- …
