8,443 research outputs found
Precision microwave dielectric and magnetic susceptibility measurements of correlated electronic materials using superconducting cavities
We analyze microwave cavity perturbation methods, and show that the technique
is an excellent, precision method to study the dynamic magnetic and dielectric
response in the frequency range. Using superconducting cavities, we
obtain exceptionally high precision and sensitivity for measurements of
relative changes. A dynamic electromagnetic susceptibility
is introduced, which
is obtained from the measured parameters: the shift of cavity resonant
frequency and quality factor . We focus on the case of a
spherical sample placed at the center of a cylindrical cavity resonant in the
mode. Depending on the sample characteristics, the magnetic
permeability , the dielectric permittivity and
the complex conductivity can be extracted from
. A full spherical wave analysis of the cavity perturbation
is given. This analysis has led to the observation of new phenomena in novel
low dimensional materials.Comment: 16 pages, 5 figure
Effects of Three Gorges Reservoir (TGR) water storage in June 2003 on Yangtze River sediment entering the estuary
International audienceThe world-greatest water conservancy project, Three Gorges Reservoir (TGR), stored water for the first time in June 2003, which provides an excellent opportunity to examine its effects on the sediment entering the Yangtze River estuary. A daily record dataset of water discharge and suspended sediment concentration (SSC) of the Yangtze River measured at Datong (the controlling hydrological gauging station into the estuary) from May 15 to July of 2003 spanning the water storage, together with a monthly record dataset of runoff, sediment load and SSC measured at Datong from 1953 to 2003, were used to examine the effects of the TGR water storage in June 2003 on the Yangtze River sediment entering the estuary. The results show that the unnaturally clearer water due to the TGR sedimentation resulted by the water storage in June 2003 brought the Yangtze River markedly decreased SSC and sediment load entering the estuary both during the TGR water storage and in the second half year of 2003. The Yangtze River water and sediment discharges into the estuary from 15 May to 15 July in 2003 spanning the TGR water storage clearly indicated three phases: (1) pre-water storage of the TGR from 15 May to 25 May, during this phase, SSC and sediment load increased with water discharge increasing; (2) water storage of the TGR from 25 May to 10 June (including the preparation phase from 25 May to 31 May), during this phase, SSC and sediment load decreased dramatically with water discharge decreasing; and (3) post-water storage of the TGR, at the beginning, SSC, sediment load and water discharge basically remained at a relatively low value until the end of June, and since then, SSC and sediment load increased gradually with water discharge increasing. In addition, the real total sediment load was reduced by 2456.07×104 t than the estimated total sediment load during the period from 27 May to 2 July in 2003
Atomic hydrogen maser measurements with wall surfaces of carbon tetrafluoride
The principal objectives of the Smithsonian Astrophysical Observatory cold maser research programs are given. This work is aimed principally at understanding more about the interaction of hydrogen atoms with wall coatings of fluorinated ethylene propylene (Dupont Teflon FEP-120 co-polymer) and of carbon tetrafluoride (CE4). The principal measured quantity in these experiments is the wall shift of the maser's output frequency. The wall shift per atomic collision was calculated from the measured wall frequency shift. This assumes that the wall surface area is smooth on a molecular scale
Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator
We demonstrate a diode-laser-pumped system for generation of quadrature
squeezing and polarization squeezing. Due to their excess phase noise, diode
lasers are challenging to use in phase-sensitive quantum optics experiments
such as quadrature squeezing. The system we present overcomes the phase noise
of the diode laser through a combination of active stabilization and
appropriate delays in the local oscillator beam. The generated light is
resonant to the rubidium D1 transition at 795nm and thus can be readily used
for quantum memory experiments.Comment: 6 pages 4 figure
Comparative Study on the Structures of Chinese and Korean Compound Words
The goal of the research was to compare the compound words in Chinese, an isolated language, and Korean, an agglutinative language. This research used library research. The researchers found that the main characteristics of the formation of Korean compound words were that the latter element was the central word. The method of word formation decided its lexical category. Moreover, most of the internal relationships of the compound words were connection and modification. While in Chinese, the endocentric compound noun decided the part of speech of the compound word, and could be the proceeding element or the latter element. Furthermore, Chinese contained no complicated morphological changes. It is concluded that Korean is a Subject–Object–Verb (SOV) language, where verb elements demonstrate a central feature of the compound verb are always a trailing part. Thus, there is no exocentric compound verb in Korean. By contrast, Chinese is a typical SVO language. When constituting the compound verbs, nouns or adjectives can function as the structural elements. Therefore, there is no permanent position for head words
Drought events and their effects on vegetation productivity in China
Many parts of the world have experienced frequent and severe droughts during the last few decades. Most previous studies examined the effects of specific drought events on vegetation productivity. In this study, we characterized the drought events in China from 1982 to 2012 and assessed their effects on vegetation productivity inferred from satellite data. We first assessed the occurrence, spatial extent, frequency, and severity of drought using the Palmer Drought Severity Index (PDSI). We then examined the impacts of droughts on China\u27s terrestrial ecosystems using the Normalized Difference Vegetation Index (NDVI). During the period 1982–2012, China\u27s land area (%) experiencing drought showed an insignificant trend. However, the drought conditions had been more severe over most regions in northern parts of China since the end of the 1990s, indicating that droughts hit these regions more frequently due to the drier climate. The severe droughts substantially reduced annual and seasonal NDVI. The magnitude and direction of the detrended NDVI under drought stress varied with season and vegetation type. The inconsistency between the regional means of PDSI and detrended NDVI could be attributed to different responses of vegetation to drought and the timing, duration, severity, and lag effects of droughts. The negative effects of droughts on vegetation productivity were partly offset by the enhancement of plant growth resulting from factors such as lower cloudiness, warming climate, and human activities (e.g., afforestation, improved agricultural management practices)
The kinetics of selective oxidation of propene on bismuth vanadium molybdenum oxide catalysts
We report the results of a systematic investigation of the kinetics of propene oxidation to acrolein over Bi1-x/3V1-xMoxO4. BET isotherms were measured to determine catalyst surface area, and powder X-ray diffraction was used to characterize the bulk structure. Further characterization by X-ray absorption near-edge spectroscopy (XANES) was used to determine the oxidation states of Bi, Mo, and V before and after exposure of the catalyst to propene at 713 K. We find that, contrary to previous discussions of the mechanism of propene oxidation on Bi1-x/3V1-xMoxO4, Bi remains in the 3+ state and only V and Mo undergo reduction and oxidation during reaction. The kinetics of propene oxidation were examined to establish the activation barrier for acrolein formation, and how the partial pressure dependences on propene and oxygen change with the value of x. The data obtained from this study were then used to propose a generalized model for the kinetics of propene oxidation over Bi1-x/3V 1-xMoxO4 that is consistent with our findings about the reducibility of the three metallic elements in the oxide. According to this model, vanadium and molybdenum are randomly distributed to form three types of sites each associated with its own rate parameters. MoV sites are found to exhibit the highest activity. The proposed model provides a good description of the experimental data for all catalyst formulations examined, for a range of propene and oxygen partial pressures, and for temperatures above 653 K. © 2013 Elsevier Inc. All rights reserved
- …
