698 research outputs found

    Amplification, Saturation, and Q Thresholds for Runaway: Growth of Self-Gravitating Structures in Models of Magnetized Galactic Gas Disks

    Full text link
    We investigate the susceptibility of gaseous, magnetized galactic disks to formation of self-gravitating condensations using two-dimensional, local models. We focus on two issues: (1) determining the threshold condition for gravitational runaway, taking into account nonlinear effects, and (2) distinguishing the magneto-Jeans instability (MJI) that arises under inner-galaxy rotation curves from the modified swing amplification (MSA) that arises under outer-galaxy rotation curves. For axisymmetric density fluctuations, instability is known to require a Toomre parameter Q<1. For nonaxisymmetric fluctuations, any nonzero shear q≡−dln⁥Ω/dln⁥Rq \equiv -d\ln \Omega /d \ln R winds up wavefronts such that in linear theory amplification saturates. Any Q threshold for nonaxisymmetric gravitational runaway must originate from nonlinear effects. We use numerical magnetohydrodynamic simulations to demonstrate the anticipated threshold phenomenon, to analyze the nonlinear processes involved, and to evaluate the critical value QcQ_c for stabilization. We find Qc∌1.2−1.4Q_c \sim 1.2-1.4 for a wide variety of conditions, with the largest values corresponding to nonzero but subthermal mean magnetic fields. Our findings for QcQ_c are similar to those inferred from thresholds for active star formation in the outer regions of spiral galaxies. MJI is distinct from MSA in that opposition to Coriolis forces by magnetic tension, rather than cooperation of epicyclic motion with kinematic shear, enables nonaxisymmetric density perturbations to grow. We suggest that under low-shear inner-disk conditions, QcQ_c will be larger than that in outer disks by a factor ∌(vA/qcs)1/2\sim (v_A/q c_s)^{1/2}, where vAv_A and csc_s are the respective Alfven and sound speeds.Comment: 45 pages, 15 figures, Accepted for publication in ApJ; better postscript figures available from http://www.astro.umd.edu/~kimwt/FIGURES/ ; for associated Animated GIF movies, see http://www.astro.umd.edu/~kimwt/MOVIES

    Effect of melt conditioning on heat treatment and mechanical properties of AZ31 alloy strips produced by twin roll casting

    Get PDF
    In the present investigation, magnesium strips were produced by twin roll casting (TRC) and melt conditioned twin roll casting (MC-TRC) processes. Detailed optical microscopy studies were carried out on as-cast and homogenized TRC and MC-TRC strips. The results showed uniform, fine and equiaxed grain structure was observed for MC-TRC samples in as-cast condition. Whereas, coarse columnar grains with centreline segregation were observed in the case of as-cast TRC samples. The solidification mechanisms for TRC and MC-TRC have been found completely divergent. The homogenized TRC and MC-TRC samples were subjected to tensile test at elevated temperature (250-400 °C). At 250 °C, MC-TRC sample showed significant improvement in strength and ductility. However, at higher temperatures the tensile properties were almost comparable, despite of TRC samples having larger grains compared to MC-TRC samples. The mechanism of deformation has been explained by detailed fractures surface and sub-surface analysis carried out by scanning electron and optical microscopy. Homogenized MC-TRC samples were formed (hot stamping) into engineering component without any trace of crack on its surface. Whereas, TRC samples cracked in several places during hot stamping process.EPSRC – LiME, UK and Towards Affordable, Closed-Loop Recyclable Future Low Carbon Vehicle Structures – TARF-LCV(EP/I038616/1), Department of Mechanical Engineering, Imperial College London, UK, Mr. Steve Cook, Mr. Peter Lloyd, Mr. Graham Mitchell and Mr. Carmelo and BCAST, Brunel University London

    The Growth of Black Holes and Their Host Spheroids in (Sub)mm-loud QSOs at High Redshift

    Full text link
    We study the growth of black holes and stellar population in spheroids at high redshift using several (sub)mm-loud QSO samples. Applying the same criteria established in an earlier work, we find that, similar to IR QSOs at low redshift, the far-infrared emission of these (sub)mm-loud QSOs mainly originates from dust heated by starbursts. By combining low-z IR QSOs and high-z (sub)mm-loud QSOs, we find a trend that the star formation rate (\Mstardot) increases with the accretion rate (\Mdot). We compare the values of \Mstardot/\Mdot for submm emitting galaxies (SMGs), far-infrared ultraluminous/hyperluminous QSOs and typical QSOs, and construct a likely evolution scenario for these objects. The (sub)mm-loud QSO transition phase has both high \Mdot and \Mstardot and hence is important for establishing the correlation between the masses of black holes and spheroids.Comment: 19 pages,3 figures,submitted to Chin. J. Astron. Astrophys. This paper was first prepared for publication on August 10th, 200

    Synthesis of Mesoporous Silica@Co–Al Layered Double Hydroxide Spheres: Layer-by-Layer Method and Their Effects on the Flame Retardancy of Epoxy Resins

    Get PDF
    Hierarchical mesoporous silica@Co–Al layered double hydroxide (m-SiO2@Co–Al LDH) spheres were prepared through a layer-by-layer assembly process, in order to integrate their excellent physical and chemical functionalities. TEM results depicted that, due to the electrostatic potential difference between m-SiO2 and Co–Al LDH, the synthetic m-SiO2@Co–Al LDH hybrids exhibited that m-SiO2 spheres were packaged by the Co–Al LDH nanosheets. Subsequently, the m-SiO2@Co–Al LDH spheres were incorporated into epoxy resin (EP) to prepare specimens for investigation of their flame-retardant performance. Cone results indicated that m-SiO2@Co–Al LDH incorporated obviously improved fire retardant of EP. A plausible mechanism of fire retardant was hypothesized based on the analyses of thermal conductivity, char residues, and pyrolysis fragments. Labyrinth effect of m-SiO2 and formation of graphitized carbon char catalyzed by Co–Al LDH play pivotal roles in the flame retardance enhancement

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres

    New determination of the 13C(a, n)16O reaction rate and its influence on the s-process nucleosynthesis in AGB stars

    Full text link
    We present a new measurement of the α\alpha-spectroscopic factor (SαS_\alpha) and the asymptotic normalization coefficient (ANC) for the 6.356 MeV 1/2+^+ subthreshold state of 17^{17}O through the 13^{13}C(11^{11}B, 7^{7}Li)17^{17}O transfer reaction and we determine the α\alpha-width of this state. This is believed to have a strong effect on the rate of the 13^{13}C(α\alpha, nn)16^{16}O reaction, the main neutron source for {\it slow} neutron captures (the ss-process) in asymptotic giant branch (AGB) stars. Based on the new width we derive the astrophysical S-factor and the stellar rate of the 13^{13}C(α\alpha, nn)16^{16}O reaction. At a temperature of 100 MK our rate is roughly two times larger than that by \citet{cau88} and two times smaller than that recommended by the NACRE compilation. We use the new rate and different rates available in the literature as input in simulations of AGB stars to study their influence on the abundances of selected ss-process elements and isotopic ratios. There are no changes in the final results using the different rates for the 13^{13}C(α\alpha, nn)16^{16}O reaction when the 13^{13}C burns completely in radiative conditions. When the 13^{13}C burns in convective conditions, as in stars of initial mass lower than ∌\sim2 M_\sun and in post-AGB stars, some changes are to be expected, e.g., of up to 25% for Pb in our models. These variations will have to be carefully analyzed when more accurate stellar mixing models and more precise observational constraints are available

    In situ edge engineering in two-dimensional transition metal dichalcogenides

    Get PDF
    Exerting synthetic control over the edge structure and chemistry of two-dimensional (2D) materials is of critical importance to direct the magnetic, optical, electrical, and catalytic properties for specific applications. Here, we directly image the edge evolution of pores in Mo1-xWxSe2 monolayers via atomic-resolution in situ scanning transmission electron microscopy (STEM) and demonstrate that these edges can be structurally transformed to theoretically predicted metastable atomic configurations by thermal and chemical driving forces. Density functional theory calculations and ab initio molecular dynamics simulations explain the observed thermally induced structural evolution and exceptional stability of the four most commonly observed edges based on changing chemical potential during thermal annealing. The coupling of modeling and in situ STEM imaging in changing chemical environments demonstrated here provides a pathway for the predictive and controlled atomic scale manipulation of matter for the directed synthesis of edge configurations in Mo-1_xWxSe2 to achieve desired functionality

    Dengue Virus Infection-Enhancing Activity in Serum Samples with Neutralizing Activity as Determined by Using FcÎłR-Expressing Cells

    Get PDF
    Dengue has become a major international public health concern in recent decades. There are four dengue virus serotypes. Recovery from infection with one serotype confers life-long protection to the homologous serotype but only partial protection to subsequent infection with other serotypes. Secondary infection with a serotype different from that in primary infection increases the risk of development of severe complications. Antibodies may play two competing roles during infection: virus neutralization that leads to protection and recovery, or infection-enhancement that may cause severe complications. Progress in vaccine development has been hampered by limited understanding on protective immunity against dengue virus infection. We report the neutralization activity and infection-enhancement activity in individuals with dengue in Malaysia. We show that infection-enhancement activity is present when neutralizing activity is absent or low, and cross-reactive neutralizing activity may be hampered by infection-enhancing activity. Conventional assays for titration of neutralizing antibody do not consider infection-enhancement activity. We used an alternative assay that determines the sum of neutralizing and infection-enhancement activity in sera from dengue patients. In addition to providing insights into antibody responses during infection, the alternative assay provides a new platform for the study of immune responses to vaccine

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres
    • 

    corecore