119 research outputs found

    Characteristics of equatorial gravity waves derived from mesospheric airglow imaging observations

    Get PDF
    We present the characteristics of small-scale (<100 km) gravity waves in the equatorial mesopause region derived from OH airglow imaging observations at Kototabang (100.3° E, 0.2° S), Indonesia, from 2002 to 2005. We adopted a method that could automatically detect gravity waves in the airglow images using two-dimensional cross power spectra of gravity waves. The propagation directions of the waves were likely controlled by zonal filtering due to stratospheric mean winds that show a quasi-biennial oscillation (QBO) and the presence of many wave sources in the troposphere

    Flow profiling of a surface acoustic wave nanopump

    Get PDF
    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing Surface Acoustic Waves is investigated both experimentally and theoretically. Such ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate an internal streaming within the fluid. Such acoustic streaming can be used for controlled agitation during, e.g., microarray hybridization. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power somewhat weaker than linearly and to decrease fast with the distance from the ultrasound generator on the chip.Comment: 12 pages 20 figure

    Study of reconnection-associated multi-scale fluctuations with Cluster and Double Star

    Full text link
    The objective of the paper is to asses the specific spectral scaling properties of magnetic reconnection associated fluctuations/turbulence at the Earthward and tailward outflow regions observed simultaneously by the Cluster and Double Star (TC-2) spacecraft on September 26, 2005. Systematic comparisons of spectral characteristics, including variance anisotropy and scale-dependent spectral anisotropy features in wave vector space were possible due to the well-documented reconnection events, occurring between the positions of Cluster (X = -14--16 ReR_e) and TC-2 (X = -6.6 ReR_e). Another factor of key importance is that the magnetometers on the spacecraft are similar. The comparisons provide further evidence for asymmetry of physical processes in Earthward/tailward reconnection outflow regions. Variance anisotropy and spectral anisotropy angles estimated from the multi-scale magnetic fluctuations in the tailward outflow region show features which are characteristic for magnetohydrodynamic cascading turbulence in the presence of a local mean magnetic field. The multi-scale magnetic fluctuations in the Earthward outflow region are exhibiting more power, lack of variance and scale dependent anisotropies, but also having larger anisotropy angles. In this region the magnetic field is more dipolar, the main processes driving turbulence are flow breaking/mixing, perhaps combined with turbulence ageing and non-cascade related multi-scale energy sources.Comment: 30 pages, 6 figure

    Enhanced ion acceleration from transparency-driven foils demonstrated at two ultraintense laser facilities

    Get PDF
    Laser-driven ion sources are a rapidly developing technology producing high energy, high peak current beams. Their suitability for applications, such as compact medical accelerators, motivates development of robust acceleration schemes using widely available repetitive ultraintense femtosecond lasers. These applications not only require high beam energy, but also place demanding requirements on the source stability and controllability. This can be seriously affected by the laser temporal contrast, precluding the replication of ion acceleration performance on independent laser systems with otherwise similar parameters. Here, we present the experimental generation of >60 MeV protons and >30 MeV u-1 carbon ions from sub-micrometre thickness Formvar foils irradiated with laser intensities >1021 Wcm2. Ions are accelerated by an extreme localised space charge field ≳30 TVm-1, over a million times higher than used in conventional accelerators. The field is formed by a rapid expulsion of electrons from the target bulk due to relativistically induced transparency, in which relativistic corrections to the refractive index enables laser transmission through normally opaque plasma. We replicate the mechanism on two different laser facilities and show that the optimum target thickness decreases with improved laser contrast due to reduced pre-expansion. Our demonstration that energetic ions can be accelerated by this mechanism at different contrast levels relaxes laser requirements and indicates interaction parameters for realising application-specific beam delivery

    Stochastic Gravity: A Primer with Applications

    Get PDF
    Stochastic semiclassical gravity of the 90's is a theory naturally evolved from semiclassical gravity of the 70's and 80's. It improves on the semiclassical Einstein equation with source given by the expectation value of the stress-energy tensor of quantum matter fields in curved spacetimes by incorporating an additional source due to their fluctuations. In stochastic semiclassical gravity the main object of interest is the noise kernel, the vacuum expectation value of the (operator-valued) stress-energy bi-tensor, and the centerpiece is the (stochastic) Einstein-Langevin equation. We describe this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh close-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise and decoherence. We then describe the application of stochastic gravity to the backreaction problems in cosmology and black hole physics. Intended as a first introduction to this subject, this article places more emphasis on pedagogy than completeness.Comment: 46 pages Latex. Intended as a review in {\it Classical and Quantum Gravity

    Decoherence, einselection, and the quantum origins of the classical

    Full text link
    Decoherence is caused by the interaction with the environment. Environment monitors certain observables of the system, destroying interference between the pointer states corresponding to their eigenvalues. This leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the Universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly non-local "Schr\"odinger cat" states. Classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit: Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between the apparatus and the measured system with the classical correlation.Comment: Final version of the review, with brutally compressed figures. Apart from the changes introduced in the editorial process the text is identical with that in the Rev. Mod. Phys. July issue. Also available from http://www.vjquantuminfo.or

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol
    • …
    corecore