53 research outputs found

    A Large Hadron Electron Collider at CERN

    Full text link
    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb1^{-1}. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC

    A systematic autopsy survey of human infant bridging veins

    Get PDF
    In the first years of life, subdural haemorrhage (SDH) within the cranial cavity can occur through accidental and non-accidental mechanisms as well as from birth-related injury. This type of bleeding is the most common finding in victims of abusive head trauma (AHT). Historically, the most frequent cause of SDHs in infancy is suggested to be traumatic damage to bridging veins traversing from the brain to the dural membrane. However, several alternative hypotheses have been suggested for the cause and origin of subdural bleeding. It has also been suggested by some that bridging veins are too large to rupture through the forces associated with AHT. To date, there have been no systematic anatomical studies on infant bridging veins. During 43 neonatal, infant and young child post-mortem examinations, we have mapped the locations and numbers of bridging veins onto a 3D model of the surface of a representative infant brain. We have also recorded the in situ diameter of 79 bridging veins from two neonatal, one infant and two young children at post-mortem examination. Large numbers of veins, both distant from and directly entering the dural venous sinuses, were discovered travelling between the brain and dural membrane, with the mean number of veins per brain being 54.1 and the largest number recorded as 94. The mean diameter of the bridging veins was 0.93 mm, with measurements ranging from 0.05 to 3.07 mm. These data demonstrate that some veins are extremely small and subjectively, and they appear to be delicate. Characterisation of infant bridging veins will contribute to the current understanding of potential vascular sources of subdural bleeding and could also be used to further develop computational models of infant head injury

    A Large Hadron Electron Collider at CERN

    Get PDF
    The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60 GeV, to possibly 140 GeV, energy collides with the intense hadron beams of the LHC. Compared to the first ep collider, HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared, Q2, and in the inverse Bjorken x, while with the design luminosity of 1033 cm-2 s-1 the LHeC is projected to exceed the integrated HERA luminosity by two orders of magnitude. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering measurements. These are designed to investigate a variety of fundamental questions in strong and electroweak interactions. The LHeC thus continues the path of deep inelastic scattering (DIS) into unknown areas of physics and kinematics. The physics programme also includes electron-deuteron and electron-ion scattering in a (Q21/x) range extended by four orders of magnitude as compared to previous lepton-nucleus DIS experiments for novel investigations of neutron's and nuclear structure, the initial conditions of Quark-Gluon Plasma formation and further quantum chromodynamic phenomena. The LHeC may be realised either as a ring-ring or as a linac-ring collider. Optics and beam dynamics studies are presented for both versions, along with technical design considerations on the interaction region, magnets including new dipole prototypes, cryogenics, RF, and further components. A design study is also presented of a detector suitable to perform high precision DIS measurements in a wide range of acceptance using state-of-the art detector technology, which is modular and of limited size enabling its fast installation. The detector includes tagging devices for electron, photon, proton and neutron detection near to the beam pipe. Civil engineering and installation studies are presented for the accelerator and the detector. The LHeC can be built within a decade and thus be operated while the LHC runs in its high-luminosity phase. It so represents a major opportunity for progress in particle physics exploiting the investment made in the LHC

    Planning Spiral Motions of Nonholonomic Free-Flying Space Robots

    No full text
    corecore