2,477 research outputs found

    Tunable Electron Multibunch Production in Plasma Wakefield Accelerators

    Get PDF
    Synchronized, independently tunable and focused Ό\muJ-class laser pulses are used to release multiple electron populations via photo-ionization inside an electron-beam driven plasma wave. By varying the laser foci in the laboratory frame and the position of the underdense photocathodes in the co-moving frame, the delays between the produced bunches and their energies are adjusted. The resulting multibunches have ultra-high quality and brightness, allowing for hitherto impossible bunch configurations such as spatially overlapping bunch populations with strictly separated energies, which opens up a new regime for light sources such as free-electron-lasers

    Development that works, March 31, 2011

    Full text link
    This repository item contains a single issue of the Pardee Conference Series, On March 31, 2011, more than 100 people participated in a conference titled “Development That Works,” sponsored by Boston University’s Frederick S. Pardee Center for the Study of the Longer-Range Future in collaboration with the BU Global Development program. In the pages that follow, four essays written by Boston University graduate students capture the salient points and overarching themes from the four sessions, each of which featured presentations by outstanding scholars and practitioners working in the field of development. The conference agenda and speakers’ biographies are included following the essays.The theme and the title of the conference—”Development That Works”—stemmed from the conference organizers’ desire to explore, from a groundlevel perspective, what programs, policies, and practices have been shown—or appear to have the potential—to achieve sustained, long-term advances in development in various parts of the world. The intent was not to simply showcase “success stories,” but rather to explore the larger concepts and opportunities that have resulted in development that is meaningful and sustainable over time. The presentations and discussions focused on critical assessments of why and how some programs take hold, and what can be learned from them. From the influence of global economic structures to innovative private sector programs and the need to evaluate development programs at the “granular” level, the expert panelists provided well-informed and often provocative perspectives on what is and isn’t working in development programs today, and what could work better in the future

    Quantisations of piecewise affine maps on the torus and their quantum limits

    Full text link
    For general quantum systems the semiclassical behaviour of eigenfunctions in relation to the ergodic properties of the underlying classical system is quite difficult to understand. The Wignerfunctions of eigenstates converge weakly to invariant measures of the classical system, the so called quantum limits, and one would like to understand which invariant measures can occur that way, thereby classifying the semiclassical behaviour of eigenfunctions. We introduce a class of maps on the torus for whose quantisations we can understand the set of quantum limits in great detail. In particular we can construct examples of ergodic maps which have singular ergodic measures as quantum limits, and examples of non-ergodic maps where arbitrary convex combinations of absolutely continuous ergodic measures can occur as quantum limits. The maps we quantise are obtained by cutting and stacking

    Characterization and Structure of a Zn2+ and [2Fe-2S]-containing Copper Chaperone from Archaeoglobus Fulgidus

    Get PDF
    Bacterial CopZ proteins deliver copper to P1B-type Cu+-ATPases that are homologous to the human Wilson and Menkes disease proteins. The genome of the hyperthermophile Archaeoglobus fulgidus encodes a putative CopZ copper chaperone that contains an unusual cysteine rich N-terminal domain of 130 amino acids in addition to a C-terminal copper-binding domain with a conserved CXXC motif. The N-terminal domain (CopZ-NT) is homologous to proteins found only in extremophiles and is the only such protein that is fused to a copper chaperone. Surprisingly, optical, electron paramagnetic resonance, and X-ray absorption spectroscopic data indicate the presence of a [2Fe-2S] cluster in CopZ-NT. The intact CopZ protein binds two copper ions, one in each domain. The 1.8 Å resolution crystal structure of CopZ-NT reveals that the [2Fe-2S] cluster is housed within a novel fold and that the protein also binds a zinc ion at a four cysteine site. CopZ can deliver Cu+ to the A. fulgidus CopA N-terminal metal binding domain and is capable of reducing Cu2+ to Cu+. This unique fusion of a redox-active domain with a CXXC-containing copper chaperone domain is relevant to the evolution of copper homeostatic mechanisms and suggests new models for copper trafficking

    Modelling Effects of Rapid Evolution on Persistence and Stability in Structured Predator-Prey Systems

    Get PDF
    In this paper we explore the eco-evolutionary dynamics of a predator-prey model, where the prey population is structured according to a certain life history trait. The trait distribution within the prey population is the result of interplay between genetic inheritance and mutation, as well as selectivity in the consumption of prey by the predator. The evolutionary processes are considered to take place on the same time scale as ecological dynamics, i.e. we consider the evolution to be rapid. Previously published results show that population structuring and rapid evolution in such predator-prey system can stabilize an otherwise globally unstable dynamics even with an unlimited carrying capacity of prey. However, those findings were only based on direct numerical simulation of equations and obtained for particular parameterizations of model functions, which obviously calls into question the correctness and generality of the previous results. The main objective of the current study is to treat the model analytically and consider various parameterizations of predator selectivity and inheritance kernel. We investigate the existence of a coexistence stationary state in the model and carry out stability analysis of this state. We derive expressions for the Hopf bifurcation curve which can be used for constructing bifurcation diagrams in the parameter space without the need for a direct numerical simulation of the underlying integro-differential equations. We analytically show the possibility of stabilization of a globally unstable predator-prey system with prey structuring. We prove that the coexistence stationary state is stable when the saturation in the predation term is low. Finally, for a class of kernels describing genetic inheritance and mutation we show that stability of the predator-prey interaction will require a selectivity of predation according to the life trait

    Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Get PDF
    A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydro-dynamically controlled gas density transition injection methods

    Statistical analysis and the equivalent of a Thouless energy in lattice QCD Dirac spectra

    Get PDF
    Random Matrix Theory (RMT) is a powerful statistical tool to model spectral fluctuations. This approach has also found fruitful application in Quantum Chromodynamics (QCD). Importantly, RMT provides very efficient means to separate different scales in the spectral fluctuations. We try to identify the equivalent of a Thouless energy in complete spectra of the QCD Dirac operator for staggered fermions from SU(2) lattice gauge theory for different lattice size and gauge couplings. In disordered systems, the Thouless energy sets the universal scale for which RMT applies. This relates to recent theoretical studies which suggest a strong analogy between QCD and disordered systems. The wealth of data allows us to analyze several statistical measures in the bulk of the spectrum with high quality. We find deviations which allows us to give an estimate for this universal scale. Other deviations than these are seen whose possible origin is discussed. Moreover, we work out higher order correlators as well, in particular three--point correlation functions.Comment: 24 pages, 24 figures, all included except one figure, missing eps file available at http://pluto.mpi-hd.mpg.de/~wilke/diff3.eps.gz, revised version, to appear in PRD, minor modifications and corrected typos, Fig.4 revise
    • 

    corecore