2,839 research outputs found

    Designed-in molecular interactions lead to superior thermo-mechanical properties in nanocomposites

    Get PDF
    The effect of the nanofiller chemistry on the mechanical behaviour of thermoset polymer matrix nanocomposites is investigated. The interaction between a crosslinked polymer resin and the reinforcing nanofibers driven by their chemistry is revealed by molecular dynamics simulations. Specifically, crosslinked network systems of neat epoxy and epoxy-P(St-co-GMA) are modeled to discuss the effect of various molecular interactions as a function of temperature on a molecular basis. At 433 K, incorporation of single molecule of bonded P(St-co-GMA) and nonbonded P(St-co-GMA) lead to increase in Young’s modulus by 10% and 6%, respectively, compared to neat epoxy system

    Channel estimation scheme for 3.9G wireless communication systems using RLS algorithm

    Full text link
    Main challenges for a terminal implementation are efficient realization of the receiver, especially for channel estimation (CE) and equalization. In this paper, training based recursive least square (RLS) channel estimator technique is presented for a long term evolution (LTE) single carrier-frequency division multiple access (SC-FDMA) wireless communication system. This CE scheme uses adaptive RLS estimator which is able to update parameters of the estimator continuously, so that knowledge of channel and noise statistics are not required. Simulation results show that the RLS CE scheme with 500 Hz Doppler frequency has 3 dB better performances compared with 1.5 kHz Doppler frequency

    Low complexity MMSE based channel estimation technique for LTE OFDMA systems

    Full text link
    Long term evolution (LTE) is designed for high speed data rate, higher spectral efficiency, and lower latency as well as high-capacity voice support. LTE uses single carrierfrequency division multiple access (SC-FDMA) scheme for the uplink transmission and orthogonal frequency division multiple access (OFDMA) in downlink. The one of the most important challenges for a terminal implementation are channel estimation (CE) and equalization. In this paper, a minimum mean square error (MMSE) based channel estimator is proposed for an OFDMA systems that can avoid the ill-conditioned least square (LS) problem with lower computational complexity. This channel estimation technique uses knowledge of channel properties to estimate the unknown channel transfer function at non-pilot subcarriers.<br /

    An effective new iterative CG-method to solve unconstrained non-linear optimization issues

    Get PDF
    In this paper, we proposed a matrix-free double-search direction based on the updated parameter file of the double-search direction with a new mathematical formula for the gamma parameter. When comparing the numerical results of this algorithm with the standard (HWY) algorithm which given by Halilu, Waziri and Yusuf in 2020. We get very robust numerical results. The proposed algorithm is devoid of derivatives to solve large-scale non-linear problems by combining two search directions in one search direction. We demonstrated the overall convergence of the proposed algorithm under certain conditions. The numerical results presented in this paper show that the new search direction is useful for solving widespread non-linear test problems

    PAPR reduction technique for LTE OFDMA systems

    Full text link
    Long term evolution (LTE) is the final step toward the 4th generation (4G) of radio technologies designed to increase the capacity and speed of mobile networks. LTE uses orthogonal frequency division multiple access (OFDMA) for the downlink transmission and single carrier-frequency division multiple access (SC-FDMA) for uplink. OFDMA meets the 4G requirement for spectrum flexibility and enables cost-efficient solutions for very wide carriers with high peak rates. However, the potentially large peak-to-average power ratio (PAPR) of the transmitting signals has limited its application. This high PAPR causes interference when the OFDM signals are passed through an amplifier which does not have enough linear range. In this article, we investigate a clipping based PAPR reduction method for LTE OFDMA systems. Simulation results show that the clipping method is reduced PAPR significantly which decreases as the number of clip and filtering level is increased. As a results, increase the mean transmit power, and improve the power amplifier efficiency. This comes at the outlay of complexity, efficiency as well as cost.<br /

    Peak to average power ratio analysis for LTE systems

    Full text link
    The 3rd generation partnership project (3GPP) long term evolution (LTE) standard uses single carrier frequency division multiple access (SCFDMA) scheme for the uplink transmissions and orthogonal frequency division multiplexing access (OFDMA) in downlink. SCFDMA uses DFT spreading prior to OFDMA modulation to map the signal from each user to a subset of the available subcarriers i.e., single carrier modulation. The efficiency of a power amplifier is determined by the peak to average power ratio (PAPR) of the modulated signal. In this paper, we analyze the PAPR in 3GPP LTE systems using root raised cosine based filter. Simulation results show that the SCFDMA subcarrier mapping has a significantly lower PAPR compared to OFDMA. Also comparing the three forms of SCFDMA subcarrier mapping, results show that interleave FDMA (IFDMA) subcarrier mapping with proposed root raised cosine filter reduced PAPR significantly than localized FDMA (LFDMA) and distributed (DFDMA) mapping. This improves its radio frequency (RF) power amplifier efficiency and also the mean power output from a battery driven mobile terminal.<br /

    Identification and characterization of the Bcl-2- associated athanogene (BAG) protein family in rice

    Get PDF
    The Bcl-2-associated athanogene (BAG) proteins are involved in the regulation of Hsp70/HSC70 in animals. There are six BAG genes in human that encode nine isoforms with different subcellular locations. Arabidopsis thaliana is reported to contain seven BAG proteins. We searched BAG proteins in Oryza sativa using profile-sequence (Pfam) and profile-profile (FFAS) algorithms and found six homologs. The BAG protein family in O. sativa can be grouped into two classes based on the presence of other conserved domains. Class I consists of four OsBAG genes (1 to 4) containing an additional ubiquitin-like domain, structurally similar to the human BAG1 proteins and might be BAG1 orthologs in plants. Class II consists of two OsBAG genes (5 and 6) containing calmodulin-binding domain. Multiple sequence alignment and structural models of O. sativa BAG proteins showed conservation of surface charge (except OsBAG5) and critical residues for the binding of BAG domain to Hsp70 nucleotide binding domain (NB). Meta analysis of microarray data showed that OsBAG genes are up or down regulated under different stresses (biotic and abiotic). Data obtained from real-time PCR of OsBAG genes under heat stress showed that maximum induction in the expression of all the genes occurred after one hour exposure to heat stress, while reduction in the expression was observed in the following time course and ultimately returned to the basal level at 24 h treatment. These results suggest that OsBAG genes might play important role at the onset of heat stress. A further detailed study may explore the exact function of the members of this gene family and help to make understanding of programmed cell death (PCD) mechanism in plants.Key words: Rice, ubiquitin-like domain, nucleotide-binding domain, real-time PCR

    Subtle pH differences trigger single residue motions for moderating conformations of calmodulin

    Get PDF
    This study reveals the essence of ligand recognition mechanisms by which calmodulin (CaM) controls a variety of Ca2+ signaling processes. We study eight forms of calcium-loaded CaM each with distinct conformational states. Reducing the structure to two degrees of freedom conveniently describes main features of the conformational changes of CaM via simultaneous twist-bend motions of the two lobes. We utilize perturbation-response scanning (PRS) technique, coupled with molecular dynamics simulations. PRS is based on linear response theory, comprising sequential application of directed forces on selected residues followed by recording the resulting protein coordinates. We analyze directional preferences of the perturbations and resulting conformational changes. Manipulation of a single residue reproduces the structural change more effectively than that of single/pairs/triplets of collective modes of motion. Our findings also give information on how the flexible linker acts as a transducer of binding information to distant parts of the protein. Furthermore, by perturbing residue E31 located in one of the EF hand motifs in a specific direction, it is possible to induce conformational change relevant to five target structures. Independently, using four different pKa calculation strategies, we find this particular residue to be the charged residue (out of a total of 52), whose ionization state is most sensitive to subtle pH variations in the physiological range. It is plausible that at relatively low pH, CaM structure is less flexible. By gaining charged states at specific sites at a pH value around 7, such as E31 found in the present study, local conformational changes in the protein will lead to shifts in the energy landscape, paving the way to other conformational states. These findings are in accordance with Fluorescence Resonance Energy Transfer (FRET) measured shifts in conformational distributions towards more compact forms with decreased pH. They also corroborate mutational studies and proteolysis results which point to the significant role of E31 in CaM dynamics

    Computational engineering analysis of external geometrical modifications on the MQ-1 unmanned combat aerial vehicle

    Get PDF
    This paper focuses on the effects of external geometrical modifications on the aerodynamic characteristics of the MQ-1 predator Unmanned Combat Aerial Vehicle (UCAV) using computational fluid dynamics. The investigations are performed for 16 flight conditions at an altitude of 7.6 km and at a constant speed of 56.32 m/s. Two models are analysed, namely the baseline model and the model with external geometrical modifications installed on it. Both the models are investigated for various angles of attack from −4° to 16°, angles of bank from 0° to 6° and angles of yaw from 0° to 4°. Due to the unavailability of any experimental (wind tunnel or flight test) data for this UCAV in the literature, a thorough verification of calculations process is presented to demonstrate confidence level in the numerical simulations. The analysis quantifies the loss of lift and increase in drag for the modified version of the MQ-1 predator UCAV along with the identification of stall conditions. Local improvement (in drag) of up to 96% has been obtained by relocating external modifications, whereas global drag force reduction of roughly 0.5% is observed. The effects of external geometrical modifications on the control surfaces indicate the blanking phenomenon and reduction in forces on the control surfaces that can reduce the aerodynamic performance of the UCAV
    • …
    corecore