116 research outputs found

    Single synapse glutamate imaging reveals multiple levels of release mode regulation in mammalian synapses

    Get PDF
    Mammalian central synapses exhibit vast heterogeneity in signaling strength. In order to understand the extent of this diversity, how it is achieved, and its functional implications, characterization of a large number of individual synapses is required. Using glutamate imaging, we characterized the evoked release probability and spontaneous release frequency of over 24,000 individual synapses. We found striking variability and no correlation between action potential-evoked and spontaneous synaptic release strength, suggesting distinct regulatory mechanisms. Subpixel localization of individual evoked and spontaneous release events reveals tight spatial regulation of evoked release and enhanced spontaneous release outside of evoked release region. Using on-stage post hoc immune-labeling of vesicle-associated proteins, Ca(2+)-sensing proteins, and soluble presynaptic proteins we were able to show that distinct molecular ensembles are associated with evoked and spontaneous modes of synaptic release

    Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: a whole-genome sequencing and hospital-based cohort study

    Get PDF
    BACKGROUND: Emergence of variants with specific mutations in key epitopes in the spike protein of SARS-CoV-2 raises concerns pertinent to mass vaccination campaigns and use of monoclonal antibodies. We aimed to describe the emergence of the B.1.1.7 variant of concern (VOC), including virological characteristics and clinical severity in contemporaneous patients with and without the variant. METHODS: In this cohort study, samples positive for SARS-CoV-2 on PCR that were collected from Nov 9, 2020, for patients acutely admitted to one of two hospitals on or before Dec 20, 2020, in London, UK, were sequenced and analysed for the presence of VOC-defining mutations. We fitted Poisson regression models to investigate the association between B.1.1.7 infection and severe disease (defined as point 6 or higher on the WHO ordinal scale within 14 days of symptoms or positive test) and death within 28 days of a positive test and did supplementary genomic analyses in a cohort of chronically shedding patients and in a cohort of remdesivir-treated patients. Viral load was compared by proxy, using PCR cycle threshold values and sequencing read depths. FINDINGS: Of 496 patients with samples positive for SARS-CoV-2 on PCR and who met inclusion criteria, 341 had samples that could be sequenced. 198 (58%) of 341 had B.1.1.7 infection and 143 (42%) had non-B.1.1.7 infection. We found no evidence of an association between severe disease and death and lineage (B.1.1.7 vs non-B.1.1.7) in unadjusted analyses (prevalence ratio [PR] 0·97 [95% CI 0·72-1·31]), or in analyses adjusted for hospital, sex, age, comorbidities, and ethnicity (adjusted PR 1·02 [0·76-1·38]). We detected no B.1.1.7 VOC-defining mutations in 123 chronically shedding immunocompromised patients or in 32 remdesivir-treated patients. Viral load by proxy was higher in B.1.1.7 samples than in non-B.1.1.7 samples, as measured by cycle threshold value (mean 28·8 [SD 4·7] vs 32·0 [4·8]; p=0·0085) and genomic read depth (1280 [1004] vs 831 [682]; p=0·0011). INTERPRETATION: Emerging evidence exists of increased transmissibility of B.1.1.7, and we found increased virus load by proxy for B.1.1.7 in our data. We did not identify an association of the variant with severe disease in this hospitalised cohort. FUNDING: University College London Hospitals NHS Trust, University College London/University College London Hospitals NIHR Biomedical Research Centre, Engineering and Physical Sciences Research Council

    Radical SAM enzyme QueE defines a new minimal core fold and metal-dependent mechanism

    Get PDF
    7-carboxy-7-deazaguanine synthase (QueE) catalyzes a key S-adenosyl-L-methionine (AdoMet)- and Mg[superscript 2+]-dependent radical-mediated ring contraction step, which is common to the biosynthetic pathways of all deazapurine-containing compounds. QueE is a member of the AdoMet radical superfamily, which employs the 5′-deoxyadenosyl radical from reductive cleavage of AdoMet to initiate chemistry. To provide a mechanistic rationale for this elaborate transformation, we present the crystal structure of a QueE along with structures of pre- and post-turnover states. We find that substrate binds perpendicular to the [4Fe-4S]-bound AdoMet, exposing its C6 hydrogen atom for abstraction and generating the binding site for Mg[superscript 2+], which coordinates directly to the substrate. The Burkholderia multivorans structure reported here varies from all other previously characterized members of the AdoMet radical superfamily in that it contains a hypermodified ([β [subscript 6] over α [subscript 3]]) protein core and an expanded cluster-binding motif, CX[subscript 14]CX[subscript 2]C.United States. Dept. of Energy. Office of Biological and Environmental ResearchUnited States. Dept. of Energy. Office of Basic Energy SciencesNational Center for Research Resources (U.S.) (P41RR012408)National Institute of General Medical Sciences (U.S.) (P41GM103473)National Center for Research Resources (U.S.) (5P41RR015301-10)National Institute of General Medical Sciences (U.S.) (8 P41 GM 103403-10)United States. Dept. of Energy (Contract DE-AC02-06CH11357

    Advances in Property-Based Testing for αProlog

    Get PDF
    α\alphaCheck is a light-weight property-based testing tool built on top of α\alphaProlog, a logic programming language based on nominal logic. α\alphaProlog is particularly suited to the validation of the meta-theory of formal systems, for example correctness of compiler translations involving name-binding, alpha-equivalence and capture-avoiding substitution. In this paper we describe an alternative to the negation elimination algorithm underlying α\alphaCheck that substantially improves its effectiveness. To substantiate this claim we compare the checker performances w.r.t. two of its main competitors in the logical framework niche, namely the QuickCheck/Nitpick combination offered by Isabelle/HOL and the random testing facility in PLT-Redex.Comment: To appear, Tests and Proofs 2016; includes appendix with details not in the conference versio

    RNAcentral : a hub of information for non-coding RNA sequences

    Get PDF
    RNAcentral is a comprehensive database of non-coding RNA (ncRNA) sequences, collating information on ncRNA sequences of all types from a broad range of organisms. We have recently added a new genome mapping pipeline that identifies genomic locations for ncRNA sequences in 296 species. We have also added several new types of functional annotations, such as tRNA secondary structures, Gene Ontology annotations, and miRNA-target interactions. A new quality control mechanism based on Rfam family assignments identifies potential contamination, incomplete sequences, and more. The RNAcentral database has become a vital component of many workflows in the RNA community, serving as both the primary source of sequence data for academic and commercial groups, as well as a source of stable accessions for the annotation of genomic and functional features. These examples are facilitated by an improved RNAcentral web interface, which features an updated genome browser, a new sequence feature viewer, and improved text search functionality. RNAcentral is freely available at https://rnacentral.org

    The Elongator Complex Interacts with PCNA and Modulates Transcriptional Silencing and Sensitivity to DNA Damage Agents

    Get PDF
    Histone chaperones CAF-1 and Asf1 function to deposit newly synthesized histones onto replicating DNA to promote nucleosome formation in a proliferating cell nuclear antigen (PCNA) dependent process. The DNA replication- or DNA repair-coupled nucleosome assembly pathways are important for maintenance of transcriptional gene silencing and genome stability. However, how these pathways are regulated is not well understood. Here we report an interaction between the Elongator histone acetyltransferase and the proliferating cell nuclear antigen. Cells lacking Elp3 (K-acetyltransferase Kat9), the catalytic subunit of the six-subunit Elongator complex, partially lose silencing of reporter genes at the chromosome VIIL telomere and at the HMR locus, and are sensitive to the DNA replication inhibitor hydroxyurea (HU) and the damaging agent methyl methanesulfonate (MMS). Like deletion of the ELP3, mutation of each of the four other subunits of the Elongator complex as well as mutations in Elp3 that compromise the formation of the Elongator complex also result in loss of silencing and increased HU sensitivity. Moreover, Elp3 is required for S-phase progression in the presence of HU. Epistasis analysis indicates that the elp3Δ mutant, which itself is sensitive to MMS, exacerbates the MMS sensitivity of cells lacking histone chaperones Asf1, CAF-1 and the H3 lysine 56 acetyltransferase Rtt109. The elp3Δ mutant has allele specific genetic interactions with mutations in POL30 that encodes PCNA and PCNA binds to the Elongator complex both in vivo and in vitro. Together, these results uncover a novel role for the intact Elongator complex in transcriptional silencing and maintenance of genome stability, and it does so in a pathway linked to the DNA replication and DNA repair protein PCNA

    RNAcentral: a comprehensive database of non-coding RNA sequences

    Get PDF
    RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. The website has been subject to continuous improvements focusing on text and sequence similarity searches as well as genome browsing functionality. All RNAcentral data is provided for free and is available for browsing, bulk downloads, and programmatic access at http://rnacentral.org/.Biotechnology and Biological Sciences Research Council (BBSRC) [BB/J019232/1]
    corecore