3,860 research outputs found

    Novel Metallic Alloys as Phase Change Materials for Heat Storage in Direct Steam Generation Applications

    Get PDF
    Concentrating Solar Power (CSP) is one of the key electricity production renewable energy technologies with a clear distinguishing advantage: the possibility to store the heat generated during the sunny periods, turning it into a dispatchable technology. Current CSP Plants use an intermediate Heat Transfer Fluid (HTF), thermal oil or inorganic salt, to transfer heat from the Solar Field (SF) either to the heat exchanger (HX) unit to produce high pressure steam that can be leaded to a turbine for electricity production, or to the Thermal Energy Storage (TES) system. In recent years, a novel CSP technology is attracting great interest: Direct Steam Generation (DSG). The direct use of water/steam as HTF would lead to lower investment costs for CSP Plants by the suppression of the HX unit. Moreover, water is more environmentally friendly than thermal oils or salts, not flammable and compatible with container materials (pipes, tanks). However, this technology also has some important challenges, being one of the major the need for optimized TES systems. In DSG, from the exergy point of view, optimized TES systems based on two sensible heat TES systems (for preheating of water and superheating vapour) and a latent heat TES system for the evaporation of water (around the 70% of energy) is the preferred solution. This concept has been extensively tested [1, 2, 3] using mainly NaNO3 as latent heat storage medium. Its interesting melting temperature (Tm) of 306°C, considering a driving temperature difference of 10°C, means TES charging steam conditions of 107 bar at 316°C and discharging conditions of 81bar at 296°C. The average value for the heat of fusion (ΔHf) of NaNO3 from literature data is 178 J/g [4]. The main disadvantage of inorganic salts is their very low thermal conductivity (0.5 W/m.K) requiring sophisticated heat exchanging designs. The use of high thermal conductivity eutectic metal alloys has been recently proposed [5, 6, 7] as a feasible alternative. Tms of these proposed eutectic alloys are too high for currently available DSG solar fields, for instance the Mg49-Zn51 alloy melts at 342°C requiring saturated steam pressures above 160 bar to charge the TES unit. Being aware of this, novel eutectic metallic alloys have been designed reducing the Tms to the range between 285°C and 330°C (79bar and 145bar of charging steam pressure respectively) with ΔHfs between 150 and 170 J/g, and thus achieving metallic Phase Change Materials (PCM) suitable for the available DSG technologies.European Comission's FP

    Contrasting mechanisms underlie short‐ and longer‐term soil respiration responses to experimental warming in a dryland ecosystem

    Get PDF
    Soil carbon losses to the atmosphere through soil respiration are expected to rise with ongoing temperature increases, but available evidence from mesic biomes suggests that such response disappears after a few years of experimental warming. However, there is lack of empirical basis for these temporal dynamics in soil respiration responses, and for the mechanisms underlying them, in drylands, which collectively form the largest biome on Earth and store 32% of the global soil organic carbon pool. We coupled data from a 10 year warming experiment in a biocrust‐dominated dryland ecosystem with laboratory incubations to confront 0–2 years (short‐term hereafter) versus 8–10 years (longer‐term hereafter) soil respiration responses to warming. Our results showed that increased soil respiration rates with short‐term warming observed in areas with high biocrust cover returned to control levels in the longer‐term. Warming‐induced increases in soil temperature were the main drivers of the short‐term soil respiration responses, whereas longer‐term soil respiration responses to warming were primarily driven by thermal acclimation and warming‐induced reductions in biocrust cover. Our results highlight the importance of evaluating short‐ and longer‐term soil respiration responses to warming as a mean to reduce the uncertainty in predicting the soil carbon–climate feedback in drylands.This research was funded by the European Research Council (ERC Grant agreements 242658 [BIOCOM] and 647038 [BIODESERT]). M.D. is supported by an FPU fellowship from the Spanish Ministry of Education, Culture and Sports (FPU-15/00392). P.G.-P. is supported by a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018-024766-I). S.A. acknowledges the Spanish MINECO for financial support via the DIGGING_DEEPER project through the 2015–2016 BiodivERsA3/FACCE-JPI joint call for research proposals. F.T.M. and S.A. acknowledge support from the Generalitat Valenciana (CIDEGENT/2018/041). C.C.-D. acknowledges support from the European Research Council (ERC Grant 647038 [BIODESERT])

    Biocrusts buffer against the accumulation of soilmetallic nutrients induced by warmingand rainfall reduction

    Get PDF
    The availability of metallic nutrients in dryland soils, many of which are essential for the metabolism of soil organisms and vascular plants, may be altered due to climate change-driven increases in aridity. Biocrusts, soil surface communities dominated by lichens, bryophytes and cyanobacteria, are ecosystem engineers known to exert critical functions in dryland ecosystems. However, their role in regulating metallic nutrient availability under climate change is uncertain. Here, we evaluated whether well-developed biocrusts modulate metallic nutrient availability in response to 7 years of experimental warming and rainfall reduction in a Mediterranean dryland located in southeastern Spain. We found increases in the availability of K, Mg, Zn and Na under warming and rainfall exclusion. However, the presence of a well-developed biocrust cover buffered these effects, most likely because its constituents can uptake significant quantities of available metallic nutrients. Our findings suggest that biocrusts, a biotic community prevalent in drylands, exert an important role in preserving and protecting metallic nutrients in dryland soils from leaching and erosion. Therefore, we highlight the need to protect them to mitigate undesired effects of soil degradation driven by climate change in this globally expanding biome. Eduardo Moreno-Jimenez et al. experimentally manipulate rainfall and temperature in a Mediterranean dryland to explore the association of biocrusts with essential metallic nutrients. They find that biocrusts-communities of lichens, bryophytes and cyanobacteria on the soil surface-can buffer against the effects of warming and reduced rainfall on metallic nutrient availability

    Removal of gaseous toluene using immobilized Candida tropicalis in a fluidized bed bioreactor

    Get PDF
    A pure yeast strain Candida tropicalis was immobilized on the matrix of powdered activated carbon, sodium alginate, and polyethylene glycol (PSP beads). The immobilized beads were used as fluidized material in a bioreactor to remove toluene from gaseous stream. Applied toluene loadings were 15.4 and 29.8 g/m3 h in Step 1 and Step 2, respectively, and toluene removal was found above 95% during the entire operation. A continuous pH decline was observed and pH of the suspension was just above 6 in Step 2 but no adverse effects on treatment efficiency were observed. The CO2 yield values were found to be 0.57 and 0.62 g-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}CCO2/g-Ctoluene C_{{{\text{CO}}_{2} }} /{\text{g-}}C_{\text{toluene}} \end{document} in Step 1 and Step 2, respectively. These values indicate that a major portion of toluene-carbon was channeled to yeast respiration even at higher toluene loading. In conclusion, immobilized C. tropicalis can be used as a fluidized material for enhanced degradation of gaseous toluene

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore