1,921 research outputs found

    DFM synthesis approach based on product-process interface modelling. Application to the peen forming process.

    Get PDF
    Engineering design approach are curently CAD-centred design process. Manufacturing information is selected and assessed very late in the design process and above all as a reactive task instead of being proactive to lead the design choices. DFM appraoches are therefore assesment methods that compare several design alternatives and not real design approaches at all. Main added value of this research work concerns the use of a product-process interface model to jointly manage both the product and the manufacturing data in a proactive DFM way. The DFM synthesis approach and the interface model are presented via the description of the DFM software platform

    Multi-membership gene regulation in pathway based microarray analysis

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results: We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions: We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.The work was sponsored by the studentship scheme of the School of Information Systems, Computing and Mathematics, Brunel Universit

    Spatial Persistence of Fluctuating Interfaces

    Full text link
    We show that the probability, P_0(l), that the height of a fluctuating (d+1)-dimensional interface in its steady state stays above its initial value up to a distance l, along any linear cut in the d-dimensional space, decays as P_0(l) \sim l^(-\theta). Here \theta is a `spatial' persistence exponent, and takes different values, \theta_s or \theta_0, depending on how the point from which l is measured is specified. While \theta_s is related to fractional Brownian motion, and can be determined exactly, \theta_0 is non-trivial even for Gaussian interfaces.Comment: 5 pages, new material adde

    Understanding Collateral Evolution in Linux Device Drivers

    Get PDF
    In a modern operating system (OS), device drivers can make up over 70% of the source code. Driver code is also heavily dependent on the rest of the OS, for functions and data structure defined in the kernel and driver support libraries. These two properties together pose a significant problem for OS evolution, as any changes in the interfaces exported by the kernel and driver support libraries can trigger a large number of adjustments in dependent drivers. These adjustments, which we refer to as collateral evolutions, may be complex, entailing substantial code reorganizations. Collateral evolution of device drivers is thus time consuming and error prone. In this paper, we present a qualitative and quantitative assessment of the collateral evolution problem in Linux device driver code. We provide a taxonomy of evolutions and collateral evolutions, and show that from one version of Linux to the next, collateral evolutions can account for up to 35% of the lines modified in such code. We then identify some of the challenges that must be met in the future to automate the collateral evolution process

    Minimum spanning trees on random networks

    Full text link
    We show that the geometry of minimum spanning trees (MST) on random graphs is universal. Due to this geometric universality, we are able to characterise the energy of MST using a scaling distribution (P(ϵ)P(\epsilon)) found using uniform disorder. We show that the MST energy for other disorder distributions is simply related to P(ϵ)P(\epsilon). We discuss the relationship to invasion percolation (IP), to the directed polymer in a random media (DPRM) and the implications for the broader issue of universality in disordered systems.Comment: 4 pages, 3 figure

    DFM synthesis approach based on product-process interface modelling. Application to the peen forming process.

    Get PDF
    International audienceEngineering design approach are curently CAD-centred design process. Manufacturing information is selected and assessed very late in the design process and above all as a reactive task instead of being proactive to lead the design choices. DFM appraoches are therefore assesment methods that compare several design alternatives and not real design approaches at all. Main added value of this research work concerns the use of a product-process interface model to jointly manage both the product and the manufacturing data in a proactive DFM way. The DFM synthesis approach and the interface model are presented via the description of the DFM software platform

    Investigation of the Domain Wall Fermion Approach to Chiral Gauge Theories on the Lattice

    Full text link
    We investigate a recent proposal to construct chiral gauge theories on the lattice using domain wall fermions. We restrict ourselves to the finite volume case, in which two domain walls are present, with modes of opposite chirality on each of them. We couple the chiral fermions on only one of the domain walls to a gauge field. In order to preserve gauge invariance, we have to add a scalar field, which gives rise to additional light mirror fermion and scalar modes. We argue that in an anomaly free model these extra modes would decouple if our model possesses a so-called strong coupling symmetric phase. However, our numerical results indicate that such a phase most probably does not exist. ---- Note: 9 Postscript figures are appended as uuencoded compressed tar file.Comment: 27p. Latex; UCSD/PTH 93-28, Wash. U. HEP/93-6

    Hydrodynamic fluctuations in the Kolmogorov flow: Linear regime

    Full text link
    The Landau-Lifshitz fluctuating hydrodynamics is used to study the statistical properties of the linearized Kolmogorov flow. The relative simplicity of this flow allows a detailed analysis of the fluctuation spectrum from near equilibrium regime up to the vicinity of the first convective instability threshold. It is shown that in the long time limit the flow behaves as an incompressible fluid, regardless of the value of the Reynolds number. This is not the case for the short time behavior where the incompressibility assumption leads in general to a wrong form of the static correlation functions, except near the instability threshold. The theoretical predictions are confirmed by numerical simulations of the full nonlinear fluctuating hydrodynamic equations.Comment: 20 pages, 4 figure

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    New result for the neutron β\beta-asymmetry parameter A0A_0 from UCNA

    Full text link
    The neutron β\beta-decay asymmetry parameter A0A_0 defines the correlation between the spin of the neutron and the momentum of the emitted electron, which determines λ=gAgV\lambda=\frac{g_{A}}{g_{V}}, the ratio of the axial-vector to vector weak coupling constants. The UCNA Experiment, located at the Ultracold Neutron facility at the Los Alamos Neutron Science Center, is the first to measure such a correlation coefficient using ultracold neutrons (UCN). Following improvements to the systematic uncertainties and increased statistics, we report the new result A0=0.12054(44)stat(68)systA_0 = -0.12054(44)_{\mathrm{stat}}(68)_{\mathrm{syst}} which yields λgAgV=1.2783(22)\lambda\equiv \frac{g_{A}}{g_{V}}=-1.2783(22). Combination with the previous UCNA result and accounting for correlated systematic uncertainties produces A0=0.12015(34)stat(63)systA_0=-0.12015(34)_{\mathrm{stat}}(63)_{\mathrm{syst}} and λgAgV=1.2772(20)\lambda\equiv \frac{g_{A}}{g_{V}}=-1.2772(20).Comment: 9 pages, 7 figures, updated to as-published versio
    corecore