12,277 research outputs found
Baryon number and strangeness: signals of a deconfined antecedent
The correlation between baryon number and strangeness is used to discern the
nature of the deconfined matter produced at vanishing chemical potential in
high-energy nuclear collisions at the BNL RHIC. Comparisons of results of
various phenomenological models with correlations extracted from lattice QCD
calculations suggest that a quasi-particle picture applies. At finite baryon
densities, such as those encountered at the CERN SPS, it is demonstrated that
the presence of a first-order phase transition and the accompanying development
of spinodal decomposition would significantly enhance the number of strangeness
carriers and the associated fluctuations.Comment: 10 pages, 4 figures, latex, to appear in the proceedings of the
Workshop on Correlations and Fluctuations in Relativistic Nuclear collisions,
(MIT, April 21-23,2005
Current Induced Excitations in Cu/Co/Cu Single Ferromagnetic Layer Nanopillars
Current-induced magnetic excitations in Cu/Co/Cu single layer nanopillars
(~50 nm in diameter) have been studied experimentally as a function of Co layer
thickness at low temperatures for large applied fields perpendicular to the
layers. For asymmetric junctions current induced excitations are observed at
high current densities for only one polarity of the current and are absent at
the same current densities in symmetric junctions. These observations confirm
recent predictions of spin-transfer torque induced spin wave excitations in
single layer junctions with a strong asymmetry in the spin accumulation in the
leads.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
Current-Induced Effective Magnetic Fields in Co/Cu/Co Nanopillars
We present a method to measure the effective field contribution to
spin-transfer-induced interactions between the magnetic layers in a trilayer
nanostructure, which enables spin-current effects to be distinguished from the
usual charge-current-induced magnetic fields. This technique is demonstrated on
submicron Co/Cu/Co nanopillars. The hysteresis loop of one of the magnetic
layers in the trilayer is measured as a function of current while the direction
of magnetization of the other layer is kept fixed, first in one direction and
then in the opposite direction. These measurements show a current-dependent
shift of the hysteresis loop which, based on the symmetry of the magnetic
response, we associate with spin-transfer. The observed loop-shift with applied
current at room temperature is reduced in measurements at 4.2 K. We interprete
these results both in terms of a spin-current dependent effective activation
barrier for magnetization reversal and a spin-current dependent effective
magnetic field. From data at 4.2 K we estimate the magnitude of the
spin-transfer induced effective field to be Oe
cm/A, about a factor of 5 less than the spin-transfer torque.Comment: 6 pages, 4 figure
A para-differential renormalization technique for nonlinear dispersive equations
For \alpha \in (1,2) we prove that the initial-value problem \partial_t
u+D^\alpha\partial_x u+\partial_x(u^2/2)=0 on \mathbb{R}_x\times\mathbb{R}_t;
u(0)=\phi, is globally well-posed in the space of real-valued L^2-functions. We
use a frequency dependent renormalization method to control the strong low-high
frequency interactions.Comment: 42 pages, no figure
Properties of baryonic, electric and strangeness chemical potentials and some of their consequences in relativistic heavy ion collisions
Analytic expressions are given for the baryonic, electric and strangeness
chemical potentials which explicitly show the importance of various terms.
Simple scaling relations connecting these chemical potentials are found.
Applications to particle ratios and to fluctuations and related thermal
properties such as the isothermal compressibility kappaT are illustrated. A
possible divergence of kappaT is discussed
Evaluation of black carbon estimations in global aerosol models
We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) from AERONET and Ozone Monitoring Instrument (OMI) retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retrievals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50 N, the average model is a factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimates the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates of refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the range represented by the full set of AeroCom models. Upper tropospheric concentrations of BC mass from the aircraft measurements are suggested to provide a unique new benchmark to test scavenging and vertical dispersion of BC in global models
Mechanisms of high-frequency song generation in brachypterous crickets and the role of ghost frequencies
Sound production in crickets relies on stridulation, the well-understood rubbing together of a pair of specialised wings. As the file of one wing slides over the scraper of the other, a series of rhythmic impacts cause harmonic oscillations, usually resulting in the radiation of pure tones delivered at low frequencies (2-8 kHz). In the short winged crickets of the Lebinthini tribe, acoustic communication relies on signals with remarkably high frequencies (> 8 kHz) and rich harmonic content. Using several species of the subfamily Eneopterinae, we characterise the morphological and mechanical specialisations supporting the production of high frequencies, and demonstrate that higher harmonics are exploited as dominant frequencies. These specialisations affect the structure of the stridulatory file, the motor control of stridulation and the resonance of the sound radiator. We place these specialisations in a phylogenetic framework and show that they serve to exploit high frequency vibrational modes pre-existing in the phylogenetic ancestor. In Eneopterinae, the lower frequency components are harmonically related to the dominant peak, suggesting they are relicts of ancestral carrier frequencies. Yet, such ghost frequencies still occur in the wings' free resonances, highlighting the fundamental mechanical constraints of sound radiation. These results support the hypothesis that such high frequency songs evolved stepwise, by a form of punctuated evolution which could be related to functional constraints, rather than by the progressive increase of the ancestral fundamental frequency
Thermal Hadron Production in High Energy Heavy Ion Collisions
We provide a method to test if hadrons produced in high energy heavy ion
collisions were emitted at freeze-out from an equilibrium hadron gas. Our
considerations are based on an ideal gas at fixed temperature , baryon
number density , and vanishing total strangeness. The constituents of this
gas are all hadron resonances up to a mass of 2 GeV; they are taken to decay
according to the experimentally observed branching ratios. The ratios of the
various resulting hadron production rates are tabulated as functions of
and . These tables can be used for the equilibration analysis of any heavy
ion data; we illustrate this for some specific cases.Comment: 12 pages (not included :13 figures + tables) report CERN-TH 6523/92
and Bielefeld preprint BI-TP 92/0
Correlated quantum percolation in the lowest Landau level
Our understanding of localization in the integer quantum Hall effect is
informed by a combination of semi-classical models and percolation theory.
Motivated by the effect of correlations on classical percolation we study
numerically electron localization in the lowest Landau level in the presence of
a power-law correlated disorder potential. Careful comparisons between
classical and quantum dynamics suggest that the extended Harris criterion is
applicable in the quantum case. This leads to a prediction of new localization
quantum critical points in integer quantum Hall systems with power-law
correlated disorder potentials. We demonstrate the stability of these critical
points to addition of competing short-range disorder potentials, and discuss
possible experimental realizations.Comment: 15 pages, 12 figure
The Galactic Bulge exploration I.: The period-absolute\,magnitude-metallicity relations for RR~Lyrae stars for , , , , , , , and passbands using DR3 parallaxes
We present a new set of period-absolute magnitude-metallicity (PMZ) relations
for single-mode RR Lyrae stars calibrated for the optical , ,
, , near-infrared , , , and passbands. We
compiled a large dataset (over objects) of fundamental and first-overtone
RR~Lyrae pulsators consisting of mean intensity magnitudes, reddenings,
pulsations properties, iron abundances, and parallaxes measured by the
\textit{Gaia} astrometric satellite in its third data release. Our newly
calibrated PMZ relations encapsulate the most up-to-date ingredients in terms
of both data and methodology. They are aimed to be used in conjunction with
large photometric surveys targeting the Galactic bulge, including the Optical
Gravitational Lensing Experiment (OGLE), the Vista Variables in the V\'ia
L\'actea Survey (VVV), and the \textit{Gaia} catalog. In addition, our Bayesian
probabilistic approach provides accurate uncertainty estimates of the predicted
absolute magnitudes of individual RR Lyrae stars. Our derived PMZ relations
provide consistent results when compared to benchmark distances to Globular
clusters NGC\,6121 (also known as M4), NGC\,5139 (also known as omega Cen), and
Large and Small Magellanic Clouds, which are stellar systems rich in RR~Lyrae
stars. Lastly, our -band PMZ relations match well with the
previously published PMZ relations based on Gaia data and accurately predict
the distance toward the prototype of this class of variables, the eponymic
RR~Lyr itself.Comment: Accepted for publication in A&
- …