30 research outputs found
The History, Relevance, and Applications of the Periodic System in Geochemistry
Geochemistry is a discipline in the earth sciences concerned with understanding the chemistry of the Earth and what that chemistry tells us about the processes that control the formation and evolution of Earth materials and the planet itself. The periodic table and the periodic system, as developed by Mendeleev and others in the nineteenth century, are as important in geochemistry as in other areas of chemistry. In fact, systemisation of the myriad of observations that geochemists make is perhaps even more important in this branch of chemistry, given the huge variability in the nature of Earth materials – from the Fe-rich core, through the silicate-dominated mantle and crust, to the volatile-rich ocean and atmosphere. This systemisation started in the eighteenth century, when geochemistry did not yet exist as a separate pursuit in itself. Mineralogy, one of the disciplines that eventually became geochemistry, was central to the discovery of the elements, and nineteenth-century mineralogists played a key role in this endeavour. Early “geochemists” continued this systemisation effort into the twentieth century, particularly highlighted in the career of V.M. Goldschmidt. The focus of the modern discipline of geochemistry has moved well beyond classification, in order to invert the information held in the properties of elements across the periodic table and their distribution across Earth and planetary materials, to learn about the physicochemical processes that shaped the Earth and other planets, on all scales. We illustrate this approach with key examples, those rooted in the patterns inherent in the periodic law as well as those that exploit concepts that only became familiar after Mendeleev, such as stable and radiogenic isotopes
The 'zero charge' partitioning behaviour of noble gases during mantle melting
Noble-gas geochemistry is an important tool for understanding planetary processes from accretion to mantle dynamics and atmospheric formation(1-4). Central to much of the modelling of such processes is the crystal-melt partitioning of noble gases during mantle melting, magma ascent and near-surface degassing(5). Geochemists have traditionally considered the 'inert' noble gases to be extremely incompatible elements, with almost 100 per cent extraction efficiency from the solid phase during melting processes. Previously published experimental data on partitioning between crystalline silicates and melts has, however, suggested that noble gases approach compatible behaviour, and a significant proportion should therefore remain in the mantle during melt extraction(5-8). Here we present experimental data to show that noble gases are more incompatible than previously demonstrated, but not necessarily to the extent assumed or required by geochemical models. Independent atomistic computer simulations indicate that noble gases can be considered as species of 'zero charge' incorporated at crystal lattice sites. Together with the lattice strain model(9,10), this provides a theoretical framework with which to model noble-gas geochemistry as a function of residual mantle mineralogy
Chlorine isotope constraints on fluid-rock interactions during subduction and exhumation of the Zermatt-Saas ophiolite
Chlorine isotope compositions of high‐pressure (∼2.3 GPa) serpentinite, rodingite, and hydrothermally altered oceanic crust (AOC) differ significantly from high‐ and ultrahigh‐pressure (> 3.2 GPa) metasedimentary rocks in the Aosta region, Italy. Texturally early serpentinites, rodingites, and AOC have bulk δ37Cl values indistinguishable from those of modern seafloor analogues (δ37Cl = −1.0 to +1.0‰). In contrast, serpentinites and AOC samples that recrystallized during exhumation have low δ37Cl values (−2.7 to −0.5‰); 37Cl depletion correlates with progressive changes in bulk chemistry. HP/UHP metasediments have low δ37Cl values (median = −2.5‰) that differ statistically from modern marine sediments (median = −0.6‰). Cl in metasedimentary rocks is concentrated in texturally early minerals, indicating modification of seafloor compositions early in the subduction history. The data constrain fluid sources during both subduction and exhumation‐related phases of fluid‐rock interaction: (1) marine sediments at the top of the downgoing plate likely interacted with isotopically light pore fluids from the accretionary wedge in the early stages of subduction. (2) No pervasive interaction with externally derived fluid occurred during subsequent subduction to the maximum depths of burial. (3) Localized mixing between serpentinites and fluids released by previously isotopically modified metasediments occurred during exhumation in the subduction channel. Most samples, however, preserved protolith signatures during subduction to near‐arc depths