323 research outputs found

    Graphene transistors are insensitive to pH changes in solution

    Full text link
    We observe very small gate-voltage shifts in the transfer characteristic of as-prepared graphene field-effect transistors (GFETs) when the pH of the buffer is changed. This observation is in strong contrast to Si-based ion-sensitive FETs. The low gate-shift of a GFET can be further reduced if the graphene surface is covered with a hydrophobic fluorobenzene layer. If a thin Al-oxide layer is applied instead, the opposite happens. This suggests that clean graphene does not sense the chemical potential of protons. A GFET can therefore be used as a reference electrode in an aqueous electrolyte. Our finding sheds light on the large variety of pH-induced gate shifts that have been published for GFETs in the recent literature

    Ouabain Stimulates a Na+/K+-ATPase-Mediated SFK-Activated Signalling Pathway That Regulates Tight Junction Function in the Mouse Blastocyst

    Get PDF
    The Na+/K+-ATPase plays a pivotal role during preimplantation development; it establishes a trans-epithelial ionic gradient that facilitates the formation of the fluid-filled blastocyst cavity, crucial for implantation and successful pregnancy. The Na+/K+-ATPase is also implicated in regulating tight junctions and cardiotonic steroid (CTS)-induced signal transduction via SRC. We investigated the expression of SRC family kinase (SFK) members, Src and Yes, during preimplantation development and determined whether SFK activity is required for blastocyst formation. Embryos were collected following super-ovulation of CD1 or MF1 female mice. RT-PCR was used to detect SFK mRNAs encoding Src and Yes throughout preimplantation development. SRC and YES protein were localized throughout preimplantation development. Treatment of mouse morulae with the SFK inhibitors PP2 and SU6656 for 18 hours resulted in a reversible blockade of progression to the blastocyst stage. Blastocysts treated with 10−3 M ouabain for 2 or 10 minutes and immediately immunostained for phosphorylation at SRC tyr418 displayed reduced phosphorylation while in contrast blastocysts treated with 10−4 M displayed increased tyr418 fluorescence. SFK inhibition increased and SFK activation reduced trophectoderm tight junction permeability in blastocysts. The results demonstrate that SFKs are expressed during preimplantation development and that SFK activity is required for blastocyst formation and is an important mediator of trophectoderm tight junction permeability

    Deletion Hotspots in AMACR Promoter CpG Island Are cis-Regulatory Elements Controlling the Gene Expression in the Colon

    Get PDF
    Alpha-methylacyl-coenzyme A racemase (AMACR) regulates peroxisomal β-oxidation of phytol-derived, branched-chain fatty acids from red meat and dairy products — suspected risk factors for colon carcinoma (CCa). AMACR was first found overexpressed in prostate cancer but not in benign glands and is now an established diagnostic marker for prostate cancer. Aberrant expression of AMACR was recently reported in Cca; however, little is known about how this gene is abnormally activated in cancer. By using a panel of immunostained-laser-capture-microdissected clinical samples comprising the entire colon adenoma–carcinoma sequence, we show that deregulation of AMACR during colon carcinogenesis involves two nonrandom events, resulting in the mutually exclusive existence of double-deletion at CG3 and CG10 and deletion of CG12-16 in a newly identified CpG island within the core promoter of AMACR. The double-deletion at CG3 and CG10 was found to be a somatic lesion. It existed in histologically normal colonic glands and tubular adenomas with low AMACR expression and was absent in villous adenomas and all CCas expressing variable levels of AMACR. In contrast, deletion of CG12-16 was shown to be a constitutional allele with a frequency of 43% in a general population. Its prevalence reached 89% in moderately differentiated CCas strongly expressing AMACR but only existed at 14% in poorly differentiated CCas expressing little or no AMACR. The DNA sequences housing these deletions were found to be putative cis-regulatory elements for Sp1 at CG3 and CG10, and ZNF202 at CG12-16. Chromatin immunoprecipitation, siRNA knockdown, gel shift assay, ectopic expression, and promoter analyses supported the regulation by Sp1 and ZNF202 of AMACR gene expression in an opposite manner. Our findings identified key in vivo events and novel transcription factors responsible for AMACR regulation in CCas and suggested these AMACR deletions may have diagnostic/prognostic value for colon carcinogenesis

    Context and Crowding in Perceptual Learning on a Peripheral Contrast Discrimination Task: Context-Specificity in Contrast Learning

    Get PDF
    Perceptual learning is an improvement in sensitivity due to practice on a sensory task and is generally specific to the trained stimuli and/or tasks. The present study investigated the effect of stimulus configuration and crowding on perceptual learning in contrast discrimination in peripheral vision, and the effect of perceptual training on crowding in this task. 29 normally-sighted observers were trained to discriminate Gabor stimuli presented at 9° eccentricity with either identical or orthogonally oriented flankers with respect to the target (ISO and CROSS, respectively), or on an isolated target (CONTROL). Contrast discrimination thresholds were measured at various eccentricities and target-flanker separations before and after training in order to determine any learning transfer to untrained stimulus parameters. Perceptual learning was observed in all three training stimuli; however, greater improvement was obtained with training on ISO-oriented stimuli compared to CROSS-oriented and unflanked stimuli. This learning did not transfer to untrained stimulus configurations, eccentricities or target-flanker separations. A characteristic crowding effect was observed increasing with viewing eccentricity and decreasing with target-flanker separation before and after training in both configurations. The magnitude of crowding was reduced only at the trained eccentricity and target-flanker separation; therefore, learning for contrast discrimination and for crowding in the present study was configuration and location specific. Our findings suggest that stimulus configuration plays an important role in the magnitude of perceptual learning in contrast discrimination and suggest context-specificity in learning

    Gene Expression Changes in the Motor Cortex Mediating Motor Skill Learning

    Get PDF
    The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation.McGovern Institute for Brain Research at MITNational Institutes of Health (U.S.) ((NIH grant 1-RC1-NS068103-01)National Institutes of Health (U.S.) (NIH grant R01-MH084966)Roberto Rocca Education Program (Fellowship)Massachusetts Institute of Technology. Undergraduate Research Opportunities Program (Fellowship)Italy. Ministero dell'istruzione, dell'università e della ricerca (MIUR grant RBIN04H5AS)Italy. Ministero dell'istruzione, dell'università e della ricerca (MIUR grant RBLA03FLJC)Italy. Ministero dell'istruzione, dell'università e della ricerca (FIRB n. RBAP10L8TY

    The N2pc Is Increased by Perceptual Learning but Is Unnecessary for the Transfer of Learning

    Get PDF
    Background: Practice improves human performance in many psychophysical paradigms. This kind of improvement is thought to be the evidence of human brain plasticity. However, the changes that occur in the brain are not fully understood. Methodology/Principal Findings: The N2pc component has previously been associated with visuo-spatial attention. In this study, we used event-related potentials (ERPs) to investigate whether the N2pc component changed during long-term visual perceptual learning. Thirteen subjects completed several days of training in an orientation discrimination task, and were given a final test 30 days later. The results showed that behavioral thresholds significantly decreased across training sessions, and this decrement was also present in the untrained visual field. ERPs showed training significantly increased the N2pc amplitude, and this effect could be maintained for up to 30 days. However, the increase in N2pc was specific to the trained visual field. Conclusion/Significance: Training caused spatial attention to be increasingly focused on the target positions. However, this process was not transferrable from the trained to the untrained visual field, which suggests that the increase in N2pc ma

    Vision First? The Development of Primary Visual Cortical Networks Is More Rapid Than the Development of Primary Motor Networks in Humans

    Get PDF
    The development of cortical functions and the capacity of the mature brain to learn are largely determined by the establishment and maintenance of neocortical networks. Here we address the human development of long-range connectivity in primary visual and motor cortices, using well-established behavioral measures - a Contour Integration test and a Finger-tapping task - that have been shown to be related to these specific primary areas, and the long-range neural connectivity within those. Possible confounding factors, such as different task requirements (complexity, cognitive load) are eliminated by using these tasks in a learning paradigm. We find that there is a temporal lag between the developmental timing of primary sensory vs. motor areas with an advantage of visual development; we also confirm that human development is very slow in both cases, and that there is a retained capacity for practice induced plastic changes in adults. This pattern of results seems to point to human-specific development of the “canonical circuits” of primary sensory and motor cortices, probably reflecting the ecological requirements of human life

    Hypoxia leads to significant changes in alternative splicing and elevated expression of CLK splice factor kinases in PC3 prostate cancer cells

    Get PDF
    © 2018 The Author(s). Background: Mounting evidence suggests that one of the ways that cells adapt to hypoxia is through alternative splicing. The aim of this study was firstly to examine the effect of hypoxia on the alternative splicing of cancer associated genes using the prostate cancer cell line PC3 as a model. Secondly, the effect of hypoxia on the expression of several regulators of splicing was examined. Methods: PC3 cells were grown in 1% oxygen in a hypoxic chamber for 48 h, RNA extracted and sent for high throughput PCR analysis at the RNomics platform at the University of Sherbrooke, Canada. Genes whose exon inclusion rate PSI (ψ) changed significantly were identified, and their altered exon inclusion rates verified by RT-PCR in three cell lines. The expression of splice factors and splice factor kinases in response to hypoxia was examined by qPCR and western blotting. The splice factor kinase CLK1 was inhibited with the benzothiazole TG003. Results: In PC3 cells the exon inclusion rate PSI (ψ) was seen to change by >25% in 12 cancer-associated genes; MBP, APAF1, PUF60, SYNE2, CDC42BPA, FGFR10P, BTN2A2, UTRN, RAP1GDS1, PTPN13, TTC23 and CASP9 (caspase 9). The expression of the splice factors SRSF1, SRSF2, SRSF3, SAM68, HuR, hnRNPA1, and of the splice factor kinases SRPK1 and CLK1 increased significantly in hypoxia. We also observed that the splice factor kinase CLK3, but not CLK2 and CLK4, was also induced in hypoxic DU145 prostate, HT29 colon and MCF7 breast cancer cell lines. Lastly, we show that the inhibition of CLK1 in PC3 cells with the benzothiazole TG003 increased expression of the anti-apoptotic isoform caspase 9b. Conclusions: Significant changes in alternative splicing of cancer associated genes occur in prostate cancer cells in hypoxic conditions. The expression of several splice factors and splice factor kinases increases during hypoxia, in particular the Cdc-like splice factor kinases CLK1 and CLK3. We suggest that in hypoxia the elevated expression of these regulators of splicing helps cells adapt through alternative splicing of key cancer-associated genes. We suggest that the CLK splice factor kinases could be targeted in cancers in which hypoxia contributes to resistance to therapy

    Disease-Aging Network Reveals Significant Roles of Aging Genes in Connecting Genetic Diseases

    Get PDF
    One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases. Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions (PPIs), disease-gene associations, aging-gene associations, and physiological system–based genetic disease classification information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging. Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but also biological implications for prying into the nature of human diseases
    corecore