20,971 research outputs found

    Bazzoni-Glaz Conjecture

    Full text link
    In their paper, Bazzoni and Glaz conjecture that the weak global dimension of a Gaussian ring is 0,10,1 or \infty. In this paper, we prove their conjecture.Comment: arXiv admin note: substantial text overlap with arXiv:1107.044

    Magnetic, thermal and transport properties of Cd doped CeIn3_3

    Full text link
    We have investigated the effect of Cd substitution on the archetypal heavy fermion antiferromagnet CeIn3_3 via magnetic susceptibility, specific heat and resistivity measurements. The suppression of the Neel temperature, TN_{N}, with Cd doping is more pronounced than with Sn. Nevertheless, a doping induced quantum critical point does not appear to be achievable in this system. The magnetic entropy at TNT_N and the temperature of the maximum in resistivity are also systematically suppressed with Cd, while the effective moment and the Curie-Weiss temperature in the paramagnetic state are not affected. These results suggest that Cd locally disrupts the AFM order on its neighboring Ce moments, without affecting the valence of Ce. Moreover, the temperature dependence of the specific heat below TNT_N is not consistent with 3D magnons in pure as well as in Cd-doped CeIn3_3, a point that has been missed in previous investigations of CeIn3_3 and that has bearing on the type of quantum criticality in this system

    Boundary conditions and defect lines in the Abelian sandpile model

    Full text link
    We add a defect line of dissipation, or crack, to the Abelian sandpile model. We find that the defect line renormalizes to separate the two-dimensional plane into two half planes with open boundary conditions. We also show that varying the amount of dissipation at a boundary of the Abelian sandpile model does not affect the universality class of the boundary condition. We demonstrate that a universal coefficient associated with height probabilities near the defect can be used to classify boundary conditions.Comment: 8 pages, 1 figure; suggestions from referees incorporated; to be published in Phys. Rev.

    Letting Lehman Go: Critique, Social Change, and the Demise of Lehman Brothers

    Get PDF
    The collapse of the U.S. investment bank Lehman Brothers marked the escalation point of the financial crisis of 2008. Yet, while the consequences of the collapse are widely discussed, the developments that led to Lehman Brothers’ demise have yet to be dealt with from a sociological perspective. In this paper, we tackle this research gap by asking why Lehman Brothers – as opposed to other ailing banks – was not saved by the US regulators. We will show that mounting pressure from public opinion caused a shift in the risk perception on the side of the regulators. Initially oriented towards the economic risk associated with a potential failure of Lehman Brothers, the critique of the 2008 bailouts prompted regulators to weight the political risks of further bailouts over the economic risk of the bank’s collapse. Thus, we argue that the social change brought about by the collapse of Lehman Brothers was critique-induced

    Reducible means and reducible inequalities

    Get PDF
    It is well-known that if a real valued function acting on a convex set satisfies the nn-variable Jensen inequality, for some natural number n2n\geq 2, then, for all k{1,,n}k\in\{1,\dots, n\}, it fulfills the kk-variable Jensen inequality as well. In other words, the arithmetic mean and the Jensen inequality (as a convexity property) are both reducible. Motivated by this phenomenon, we investigate this property concerning more general means and convexity notions. We introduce a wide class of means which generalize the well-known means for arbitrary linear spaces and enjoy a so-called reducibility property. Finally, we give a sufficient condition for the reducibility of the (M,N)(M,N)-convexity property of functions and also for H\"older--Minkowski type inequalities

    Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip

    Get PDF
    Vascular plants rely on differences of osmotic pressure to export sugars from regions of synthesis (mature leaves) to sugar sinks (roots, fruits). In this process, known as M\"unch pressure flow, the loading of sugars from photosynthetic cells to the export conduit (the phloem) is crucial, as it sets the pressure head necessary to power long-distance transport. Whereas most herbaceous plants use active mechanisms to increase phloem concentration above that of the photosynthetic cells, in most tree species, for which transport distances are largest, loading seems to occur via passive symplastic diffusion from the mesophyll to the phloem. Here, we use a synthetic microfluidic model of a passive loader to explore the nonlinear dynamics that arise during export and determine the ability of passive loading to drive long-distance transport. We first demonstrate that in our device, phloem concentration is set by the balance between the resistances to diffusive loading from the source and convective export through the phloem. Convection-limited export corresponds to classical models of M\"unch transport, where phloem concentration is close to that of the source; in contrast, diffusion-limited export leads to small phloem concentrations and weak scaling of flow rates with the hydraulic resistance. We then show that the effective regime of convection-limited export is predominant in plants with large transport resistances and low xylem pressures. Moreover, hydrostatic pressures developed in our synthetic passive loader can reach botanically relevant values as high as 10 bars. We conclude that passive loading is sufficient to drive long-distance transport in large plants, and that trees are well suited to take full advantage of passive phloem loading strategies

    Analysis and modeling of control tasks in dynamic systems

    Get PDF
    Copyright © 2002 IEEEMost applications of evolutionary algorithms deal with static optimization problems. However, in recent years, there has been a growing interest in time-varying (dynamic) problems, which are typically found in real-world scenarios. One major challenge in this field is the design of realistic test-case generators (TCGs), which requires a systematic analysis of dynamic optimization tasks. So far, only a few TCGs have been suggested. Our investigation leads to the conclusion that these TCGs are not capable of generating realistic dynamic benchmark tests. The result of our research is the design of a new TCG capable of producing realistic nonstationary landscapesRasmus K. Ursem, Thiemo Krink, Mikkel T. Jensen, and Zbigniew Michalewic

    First-principles calculations of the structural, electronic, vibrational and magnetic properties of C_{60} and C_{48}N_{12}: a comparative study

    Get PDF
    In this work, we perform first-principles calculations of the structural, electronic, vibrational and magnetic properties of a novel C48N12{\rm C}_{48}{\rm N}_{12} azafullerene. Full geometrical optimization shows that C48N12{\rm C}_{48}{\rm N}_{12} is characterized by several distinguishing features: only one nitrogen atom per pentagon, two nitrogen atoms preferentially sitting in one hexagon, S6{\rm S}_{6} symmetry, 6 unique nitrogen-carbon and 9 unique carbon-carbon bond lengths. The highest occupied molecular orbital of C48N12{\rm C}_{48}{\rm N}_{12} is a doubly degenerate level of aga_{g} symmetry and its lowest unoccupied molecular orbital is a nondegenerate level of aua_{u} symmetry. Vibrational frequency analysis predicts that C48N12{\rm C}_{48}{\rm N}_{12} has in total 116 vibrational modes: 58 infrared-active and 58 Raman-active modes. C48N12{\rm C}_{48}{\rm N}_{12} is also characterized by 8 13C^{13}{\rm C} and 2 15N^{15}{\rm N} NMR spectral signals. Compared to C60{\rm C}_{60}, C48N12{\rm C}_{48}{\rm N}_{12} shows an enhanced third-order optical nonlinearities which implies potential applications in optical limiting and photonics.Comment: a long version of our manuscript submitted to J.Chem.Phy
    corecore