462 research outputs found
Controlling surface statistical properties using bias voltage: Atomic force microscopy and stochastic analysis
The effect of bias voltages on the statistical properties of rough surfaces
has been studied using atomic force microscopy technique and its stochastic
analysis. We have characterized the complexity of the height fluctuation of a
rough surface by the stochastic parameters such as roughness exponent, level
crossing, and drift and diffusion coefficients as a function of the applied
bias voltage. It is shown that these statistical as well as microstructural
parameters can also explain the macroscopic property of a surface. Furthermore,
the tip convolution effect on the stochastic parameters has been examined.Comment: 8 pages, 11 figures
Quantized Scaling of Growing Surfaces
The Kardar-Parisi-Zhang universality class of stochastic surface growth is
studied by exact field-theoretic methods. From previous numerical results, a
few qualitative assumptions are inferred. In particular, height correlations
should satisfy an operator product expansion and, unlike the correlations in a
turbulent fluid, exhibit no multiscaling. These properties impose a
quantization condition on the roughness exponent and the dynamic
exponent . Hence the exact values for two-dimensional
and for three-dimensional surfaces are derived.Comment: 4 pages, revtex, no figure
Upper critical dimension, dynamic exponent and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation
We study the mode-coupling approximation for the KPZ equation in the strong
coupling regime. By constructing an ansatz consistent with the asymptotic forms
of the correlation and response functions we determine the upper critical
dimension d_c=4, and the expansion z=2-(d-4)/4+O((4-d)^2) around d_c. We find
the exact z=3/2 value in d=1, and estimate the values 1.62, 1.78 for z, in
d=2,3. The result d_c=4 and the expansion around d_c are very robust and can be
derived just from a mild assumption on the relative scale on which the response
and correlation functions vary as z approaches 2.Comment: RevTex, 4 page
Directed polymers and interfaces in random media : free-energy optimization via confinement in a wandering tube
We analyze, via Imry-Ma scaling arguments, the strong disorder phases that
exist in low dimensions at all temperatures for directed polymers and
interfaces in random media. For the uncorrelated Gaussian disorder, we obtain
that the optimal strategy for the polymer in dimension with
involves at the same time (i) a confinement in a favorable tube of radius with (ii) a superdiffusive behavior with for the wandering of the best favorable
tube available. The corresponding free-energy then scales as with and the left tail of the probability
distribution involves a stretched exponential of exponent .
These results generalize the well known exact exponents ,
and in , where the subleading transverse length is known as the typical distance between two replicas in the Bethe
Ansatz wave function. We then extend our approach to correlated disorder in
transverse directions with exponent and/or to manifolds in dimension
with . The strategy of being both confined and
superdiffusive is still optimal for decaying correlations (), whereas
it is not for growing correlations (). In particular, for an
interface of dimension in a space of total dimension with
random-bond disorder, our approach yields the confinement exponent . Finally, we study the exponents in the presence of an
algebraic tail in the disorder distribution, and obtain various
regimes in the plane.Comment: 19 page
Collective Behavior of Asperities in Dry Friction at Small Velocities
We investigate a simple model of dry friction based on extremal dynamics of
asperities. At small velocities, correlations develop between the asperities,
whose range becomes infinite in the limit of infinitely slow driving, where the
system is self-organized critical. This collective phenomenon leads to
effective aging of the asperities and results in velocity dependence of the
friction force in the form .Comment: 7 pages, 8 figures, revtex, submitted to Phys. Rev.
Probability distribution of the free energy of a directed polymer in a random medium
We calculate exactly the first cumulants of the free energy of a directed
polymer in a random medium for the geometry of a cylinder. By using the fact
that the n-th moment of the partition function is given by the ground
state energy of a quantum problem of n interacting particles on a ring of
length L, we write an integral equation allowing to expand these moments in
powers of the strength of the disorder gamma or in powers of n. For n small and
n of order (L gamma)^(-1/2), the moments take a scaling form which allows
to describe all the fluctuations of order 1/L of the free energy per unit
length of the directed polymer. The distribution of these fluctuations is the
same as the one found recently in the asymmetric exclusion process, indicating
that it is characteristic of all the systems described by the
Kardar-Parisi-Zhang equation in 1+1 dimensions.Comment: 18 pages, no figure, tu appear in PRE 61 (2000
Critical dimensions of the diffusion equation
We study the evolution of a random initial field under pure diffusion in
various space dimensions. From numerical calculations we find that the
persistence properties of the system show sharp transitions at critical
dimensions d1 ~ 26 and d2 ~ 46. We also give refined measurements of the
persistence exponents for low dimensions.Comment: 4 pages, 5 figure
Derivation of continuum stochastic equations for discrete growth models
We present a formalism to derive the stochastic differential equations (SDEs)
for several solid-on-solid growth models. Our formalism begins with a mapping
of the microscopic dynamics of growth models onto the particle systems with
reactions and diffusion. We then write the master equations for these
corresponding particle systems and find the SDEs for the particle densities.
Finally, by connecting the particle densities with the growth heights, we
derive the SDEs for the height variables. Applying this formalism to discrete
growth models, we find the Edwards-Wilkinson equation for the symmetric
body-centered solid-on-solid (BCSOS) model, the Kardar-Parisi-Zhang equation
for the asymmetric BCSOS model and the generalized restricted solid-on-solid
(RSOS) model, and the Villain--Lai--Das Sarma equation for the conserved RSOS
model. In addition to the consistent forms of equations for growth models, we
also obtain the coefficients associated with the SDEs.Comment: 5 pages, no figur
The universality class of fluctuating pulled fronts
It has recently been proposed that fluctuating ``pulled'' fronts propagating
into an unstable state should not be in the standard KPZ universality class for
rough interface growth. We introduce an effective field equation for this class
of problems, and show on the basis of it that noisy pulled fronts in {\em d+1}
bulk dimensions should be in the universality class of the {\em (d+1)+1}D KPZ
equation rather than of the {\em d+1}D KPZ equation. Our scenario ties together
a number of heretofore unexplained observations in the literature, and is
supported by previous numerical results.Comment: 4 pages, 2 figure
Width Distributions and the Upper Critical Dimension of KPZ Interfaces
Simulations of restricted solid-on-solid growth models are used to build the
width-distributions of d=2-5 dimensional KPZ interfaces. We find that the
universal scaling function associated with the steady-state width-distribution
changes smoothly as d is increased, thus strongly suggesting that d=4 is not an
upper critical dimension for the KPZ equation. The dimensional trends observed
in the scaling functions indicate that the upper critical dimension is at
infinity.Comment: 4 pages, 4 postscript figures, RevTe
- …