204 research outputs found

    Long range vertical migration of Volvox in tropical Lake Cahora Bassa (Mozambique)

    Get PDF
    Volvox sp. performed diel vertical migrations in Lake Cahora Bassa, the amplitude of which greatly exceeded those reported for other species of freshwater algae. Migration velocities even exceeded the maxima attained by marine dinoflagellates. The daytime depth distribution is attributed to the light regime and the nighttime depth distribution to phosphorus uptake in deeper water layers

    Plankton ecology: The past two decades of progress

    Get PDF
    This is a selected account of recent developments in plankton ecology. The examples have been chosen for their degree of innovation during the past two decades and for their general ecological importance. They range from plankton autecology over interactions between populations to community ecology. The autecology of plankton is represented by the hydromechanics of plankton (the problem of life in a viscous environment) and by the nutritional ecology of phyto- and zooplankton. Population level studies are represented by competition, herbivory (grazing), and zooplankton responses to predation. Community ecology is represented by the debate about bottom- up vs. top-down control of community organization, by the PEG model of seasonal plankton succession, and by the recent discovery of the microbial food web

    Cloud Coverage Acts as an Amplifier for Ecological Light Pollution in Urban Ecosystems

    Get PDF
    The diurnal cycle of light and dark is one of the strongest environmental factors for life on Earth. Many species in both terrestrial and aquatic ecosystems use the level of ambient light to regulate their metabolism, growth, and behavior. The sky glow caused by artificial lighting from urban areas disrupts this natural cycle, and has been shown to impact the behavior of organisms, even many kilometers away from the light sources. It could be hypothesized that factors that increase the luminance of the sky amplify the degree of this “ecological light pollution”. We show that cloud coverage dramatically amplifies the sky luminance, by a factor of 10.1 for one location inside of Berlin and by a factor of 2.8 at 32 km from the city center. We also show that inside of the city overcast nights are brighter than clear rural moonlit nights, by a factor of 4.1. These results have important implications for choronobiological and chronoecological studies in urban areas, where this amplification effect has previously not been considered

    Effects of an anionic surfactant (FFD-6) on the energy and information flow between a primary producer (Scenedesmus obliquus) and a consumer (Daphnia magna)

    Get PDF
    The effects of a commercially available anionic surfactant solution (FFD-6) on growth and morphology of a common green alga (Scenedesmus obliquus) and on survival and clearance rates of the water flea Daphnia magna were studied. The surfactant-solution elicited a morphological response (formation of colonies) in Scenedesmus at concentrations of 10–100 μl l−1 that were far below the No Observed Effect Concentration (NOEC) value of 1,000 μl l−1 for growth inhibition. The NOEC-value of FFD-6 for colony-induction was 3 μl l−1. Daphnia survival was strongly affected by FFD-6, yielding LC50–24h and LC50–48h of 148 and 26 μl l−1, respectively. In addition, clearance rates of Daphnia feeding on unicellular Scenedesmus were inhibited by FFD-6, yielding a 50% inhibition (EC50–1.5h) at 5.2 μl l−1 with a NOEC of 0.5 μl l−1. When Daphnia were offered FFD-6-induced food in which eight-celled colonies (43 × 29 μm) were most abundant, clearance rates (~0.14 ml ind.−1 h−1) were only 25% the rates of animals that were offered non-induced unicellular (15 × 5 μm) Scenedesmus (~0.56 ml ind.−1 h−1). As FFD-6 concentrations in the treated food used in the experiments were far below the NOEC for clearance rate inhibition, it is concluded that the feeding rate depression was caused by the altered morphology of the Scenedesmus moving them out of the feeding window of the daphnids. The surfactant evoked a response in Scenedesmus that is similar to the natural chemically induced defensive reaction against grazers and could disrupt the natural information conveyance between these plankton organisms

    Strong differences in the clonal variation of two Daphnia species from mountain lakes affected by overwintering strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The population structure of cyclical parthenogens such as water fleas is strongly influenced by the frequency of alternations between sexual and asexual (parthenogenetic) reproduction, which may differ among populations and species. We studied genetic variation within six populations of two closely related species of water fleas of the genus <it>Daphnia </it>(Crustacea, Cladocera). <it>D. galeata </it>and <it>D. longispina </it>both occur in lakes in the Tatra Mountains (Central Europe), but their populations show distinct life history strategies in that region. In three studied lakes inhabited by <it>D. galeata</it>, daphnids overwinter under the ice as adult females. In contrast, in lakes inhabited by <it>D. longispina</it>, populations apparently disappear from the water column and overwinter as dormant eggs in lake sediments. We investigated to what extent these different strategies lead to differences in the clonal composition of late summer populations.</p> <p>Results</p> <p>Analysis of genetic variation at nine microsatellite loci revealed that clonal richness (expressed as the proportion of different multilocus genotypes, MLGs, in the whole analysed sample) consistently differed between the two studied species. In the three <it>D. longispina </it>populations, very high clonal richness was found (MLG/N ranging from 0.97 to 1.00), whereas in <it>D. galeata </it>it was much lower (0.05 to 0.50). The dominant MLGs in all <it>D. galeata </it>populations were heterozygous at five or more loci, suggesting that such individuals all represented the same clonal lineages rather than insufficiently resolved groups of different clones.</p> <p>Conclusions</p> <p>The low clonal diversities and significant deviations from Hardy-Weinberg equilibrium in <it>D. galeata </it>populations were likely a consequence of strong clonal erosion over extended periods of time (several years or even decades) and the limited influence of sexual reproduction. Our data reveal that populations of closely related <it>Daphnia </it>species living in relatively similar habitats (permanent, oligotrophic mountain lakes) within the same region may show strikingly different genetic structures, which most likely depend on their reproductive strategy during unfavourable periods. We assume that similar impacts of life history on population structures are also relevant for other cyclical parthenogen groups. In extreme cases, prolonged clonal erosion may result in the dominance of a single clone within a population, which might limit its microevolutionary potential if selection pressures suddenly change.</p

    Cyclic voles and shrews and non-cyclic mice in a marginal grassland within European temperate forest

    Get PDF
    Cyclic population dynamics of small mammals are not restricted to the boreal and arctic zones of Eurasia and North America, but long-term data series from lower latitudes are still less common. We demonstrated here the presence of periodic oscillations in small mammal populations in eastern Poland using 22-year (1986–2007) trapping data from marginal meadow and river valley grasslands located in the extensive temperate woodland of Białowieża Primeval Forest. The two most common species inhabiting meadows and river valleys, root vole Microtus oeconomus and common shrew Sorex araneus, exhibited synchronous periodic changes, characterised by a 3-year time lag as indicated by an autocorrelation function. Moreover, the cycles of these two species were synchronous within both habitats. Population dynamics of the striped field mouse Apodemus agrarius was not cyclic. However, this species regularly reached maximum density 1 year before the synchronized peak of root voles and common shrews, which may suggest the existence of interspecific competition. Dynamics of all three species was dominated by direct density-dependent process, whereas delayed density dependent feedback was significant only in the root vole and common shrew. Climatic factors acting in winter and spring (affecting mainly survival and initial reproduction rates) were more important than those acting in summer and autumn and affected significantly only the common shrew. High temperatures in winter and spring had positive effects on autumn-to-autumn changes in abundance of this species, whereas deep snow in combination with high rainfall in spring negatively affected population increase rates in common shrew
    corecore