298 research outputs found

    Semi-federated learning: convergence analysis and optimization of a hybrid learning framework

    Get PDF
    Under the organization of the base station (BS), wireless federated learning (FL) enables collaborative model training among multiple devices. However, the BS is merely responsible for aggregating local updates during the training process, which incurs a waste of the computational resource at the BS. To tackle this issue, we propose a semi-federated learning (SemiFL) paradigm to leverage the computing capabilities of both the BS and devices for a hybrid implementation of centralized learning (CL) and FL. Specifically, each device sends both local gradients and data samples to the BS for training a shared global model. To improve communication efficiency over the same time-frequency resources, we integrate over-the-air computation for aggregation and non-orthogonal multiple access for transmission by designing a novel transceiver structure. To gain deep insights, we conduct convergence analysis by deriving a closed-form optimality gap for SemiFL and extend the result to two extra cases. In the first case, the BS uses all accumulated data samples to calculate the CL gradient, while a decreasing learning rate is adopted in the second case. Our analytical results capture the destructive effect of wireless communication and show that both FL and CL are special cases of SemiFL. Then, we formulate a non-convex problem to reduce the optimality gap by jointly optimizing the transmit power and receive beamformers. Accordingly, we propose a two-stage algorithm to solve this intractable problem, in which we provide the closed-form solutions to the beamformers. Extensive simulation results on two real-world datasets corroborate our theoretical analysis, and show that the proposed SemiFL outperforms conventional FL and achieves 3.2% accuracy gain on the MNIST dataset compared to state-of-the-art benchmarks

    Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data

    Get PDF
    Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atmospheric muons to a level which, for the first time, allows IceCube searching for point-like sources of neutrinos in the southern sky at energies between 100 GeV and several TeV in the muon neutrino charged current channel. No significant clustering of neutrinos above background expectation was observed in four years of data recorded with the completed IceCube detector. Upper limits on the neutrino flux for a number of spectral hypotheses are reported for a list of astrophysical objects in the southern hemisphere.Comment: 19 pages, 17 figures, 2 table

    Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1

    Get PDF
    In order to identify the sources of the observed diffuse high-energy neutrino flux, it is crucial to discover their electromagnetic counterparts. IceCube began releasing alerts for single high-energy (E>60E > 60 TeV) neutrino detections with sky localisation regions of order 1 deg radius in 2016. We used Pan-STARRS1 to follow-up five of these alerts during 2016-2017 to search for any optical transients that may be related to the neutrinos. Typically 10-20 faint (m<22.5m < 22.5 mag) extragalactic transients are found within the Pan-STARRS1 footprints and are generally consistent with being unrelated field supernovae (SNe) and AGN. We looked for unusual properties of the detected transients, such as temporal coincidence of explosion epoch with the IceCube timestamp. We found only one transient that had properties worthy of a specific follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of astrophysical origin of ∼\sim50 %), we found a SN PS16cgx, located at 10.0' from the nominal IceCube direction. Spectroscopic observations of PS16cgx showed that it was an H-poor SN at z = 0.2895. The spectra and light curve resemble some high-energy Type Ic SNe, raising the possibility of a jet driven SN with an explosion epoch temporally coincident with the neutrino detection. However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously difficult. Based on all available data we conclude that the transient is more likely to be a Type Ia with relatively weak SiII absorption and a fairly normal rest-frame r-band light curve. If, as predicted, there is no high-energy neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence, and unrelated to the IceCube-160427A. We find no other plausible optical transient for any of the five IceCube events observed down to a 5σ\sigma limiting magnitude of m∼22m \sim 22 mag, between 1 day and 25 days after detection.Comment: 20 pages, 6 figures, accepted to A&

    Terminal Investment: Individual Reproduction of Ant Queens Increases with Age

    Get PDF
    The pattern of age-specific fecundity is a key component of the life history of organisms and shapes their ecology and evolution. In numerous animals, including humans, reproductive performance decreases with age. Here, we demonstrate that some social insect queens exhibit the opposite pattern. Egg laying rates of Cardiocondyla obscurior ant queens increased with age until death, even when the number of workers caring for them was kept constant. Cardiocondyla, and probably also other ants, therefore resemble the few select organisms with similar age-specific reproductive investment, such as corals, sturgeons, or box turtles (e.g., [1]), but they differ in being more short-lived and lacking individual, though not social, indeterminate growth. Furthermore, in contrast to most other organisms, in which average life span declines with increasing reproductive effort, queens with high egg laying rates survived as long as less fecund queens

    Effects of vitamin E supplementation on renal non-enzymatic antioxidants in young rats submitted to exhaustive exercise stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exercise stress was shown to increase oxidative stress in rats. It lacks reports of increased protection afforded by dietary antioxidant supplements against ROS production during exercise stress. We evaluated the effects of vitamin E supplementation on renal non-enzymatic antioxidants in young rats submitted to exhaustive exercise stress.</p> <p>Methods</p> <p>Wistar rats were divided into three groups: 1) control group; 2) exercise stress group and; 3) exercise stress + Vitamin E group. Rats from the group 3 were treated with gavage administration of 1 mL of Vitamin E (5 mg/kg) for seven consecutive days. Animals from groups 2 and 3 were submitted to a bout of swimming exhaustive exercise stress. Kidney samples were analyzed for Thiobarbituric Acid Reactive Substances to (TBARS) by malondialdehyde (MDA), reduced glutathione (GSH) and vitamin-E levels.</p> <p>Results</p> <p>The group treated with vitamin E and submitted to exercise stress presented the lowest levels of renal MDA (1: 0.16+0.02 mmmol/mgprot vs. 2: 0.34+0.07 mmmol/mgprot vs. 3: 0.1+0.01 mmmol/mgprot; p < 0.0001), the highest levels of renal GSH (1: 23+4 μmol/gprot vs. 2: 23+2 μmol/gprot vs. 3: 58+9 μmol/gprot; p < 0.0001) and the highest levels of renal vitamin E (1: 24+6 μM/gtissue vs. 2: 28+2 μM/gtissue vs. 3: 43+4 μM/gtissue; p < 0.001).</p> <p>Conclusion</p> <p>Vitamin E supplementation improved non-enzymatic antioxidant activity in young rats submitted to exhaustive exercise stress.</p

    TFOS European Ambassador meeting: Unmet needs and future scientific and clinical solutions for ocular surface diseases

    Full text link
    The mission of the Tear Film & Ocular Surface Society (TFOS) is to advance the research, literacy, and educational aspects of the scientific field of the tear film and ocular surface. Fundamental to fulfilling this mission is the TFOS Global Ambassador program. TFOS Ambassadors are dynamic and proactive experts, who help promote TFOS initiatives, such as presenting the conclusions and recommendations of the recent TFOS DEWS IIâ„¢, throughout the world. They also identify unmet needs, and propose future clinical and scientific solutions, for management of ocular surface diseases in their countries. This meeting report addresses such needs and solutions for 25 European countries, as detailed in the TFOS European Ambassador meeting in Rome, Italy, in September 2019
    • …
    corecore