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Abstract—Under the organization of the base station (BS),
wireless federated learning (FL) enables collaborative model
training among multiple devices. However, the BS is merely
responsible for aggregating local updates during the training
process, which incurs a waste of the computational resource at
the BS. To tackle this issue, we propose a semi-federated learning
(SemiFL) paradigm to leverage the computing capabilities of both
the BS and devices for a hybrid implementation of centralized
learning (CL) and FL. Specifically, each device sends both local
gradients and data samples to the BS for training a shared global
model. To improve communication efficiency over the same time-
frequency resources, we integrate over-the-air computation for
aggregation and non-orthogonal multiple access for transmission
by designing a novel transceiver structure. To gain deep insights,
we conduct convergence analysis by deriving a closed-form
optimality gap for SemiFL and extend the result to two extra
cases. In the first case, the BS uses all accumulated data samples
to calculate the CL gradient, while a decreasing learning rate is
adopted in the second case. Our analytical results capture the
destructive effect of wireless communication and show that both
FL and CL are special cases of SemiFL. Then, we formulate
a non-convex problem to reduce the optimality gap by jointly
optimizing the transmit power and receive beamformers. Accord-
ingly, we propose a two-stage algorithm to solve this intractable
problem, in which we provide the closed-form solutions to the
beamformers. Extensive simulation results on two real-world
datasets corroborate our theoretical analysis, and show that the
proposed SemiFL outperforms conventional FL and achieves
3.2% accuracy gain on the MNIST dataset compared to state-of-
the-art benchmarks.

Index Terms—Semi-federated learning, communication effi-
ciency, convergence analysis, transceiver design.
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I. INTRODUCTION

As a thriving distributed learning framework, wireless fed-
erated learning (FL) enables multiple clients (e.g., devices) to
collaboratively train a shared model by iteratively exchanging
their local updates (e.g., model parameters or gradients) with
the parameter server (e.g., the base station (BS)) [2]–[4].
Compared to centralized learning (CL), FL features data
privacy preservation, reduced communication cost, and fast
inference [5], [6]. However, in the conventional FL paradigm,
only the distributed computational resources of local devices
are utilized to complete the model training [7]. The powerful
computing capability of the BS is insufficiently involved in the
learning task. This raises an intuitive problem: how to exploit
the underutilized computational resource at the BS to improve
the performance of FL? To solve this problem, one potential
strategy is to provide the BS with some data samples from
devices so that its computational resources can be utilized to
further promote the model performance [8], [9].

Apart from how to compute model, another critic issue of
FL is how to transmit local updates in wireless networks. In the
literature, there are three commonly adopted wireless commu-
nication schemes for transmitting local updates from devices
to the BS, including orthogonal multiple access (OMA) [10],
non-orthogonal multiple access (NOMA) [11], [12], and over-
the-air computation (AirComp) [13]–[15]. Specifically, in
OMA-based FL schemes, each device occupies a dedicated
resource block in the time or frequency domain to avoid
interference. However, the transmission bandwidth or time of
OMA decreases with the number of devices, which results in
a higher communication latency and thus taking more time to
reach the global convergence. By allowing all devices to share
the resource block, NOMA-based FL schemes are beneficial to
support massive connectivity and improve the throughput [16],
thus accelerating the training speed. However, the co-channel
interference introduced by NOMA brings new challenges for
the transceiver design and signal decoding. For instance, if the
transmit power of local devices is improperly allocated, it will
increase the inter-device interference when the BS decodes
individual signals, and even prevent the BS from decoding the
signals correctly, thereby reducing the achievable data rate of
uplink transmissions.

Note that both OMA- and NOMA-based schemes are
communication-centric paradigms, which do not directly
match the model aggregation process of FL tasks. Recently, by
aggregating local updates based on the superposition property
of the wireless channel [14], AirComp-based FL schemes
have drawn considerable attention for their unique advan-
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tages, such as exploiting interference for computation and
reducing latency. As mentioned previously, in order to make
full use of the computing resources of the BS, local devices
can upload some data samples to the BS while uploading
the local updates. However, AirComp-based schemes mainly
focus on function computation instead of decoding individ-
ual data streams, which makes it impossible for devices to
simultaneously upload data samples and local updates in a
spectrum-efficient manner. This raises a challenging problem:
how to design a spectral-efficient joint communication and
computation (JCC) scheme that supports the concurrent uplink
transmission of data samples and local updates using the
shared time-frequency resources? Intuitively, one can directly
incorporate communication-efficient NOMA and computation-
efficient AirComp into a harmonized multiple access scheme
so that their respective advantages can be sufficiently lever-
aged. Nevertheless, the transceiver structure for supporting
such an integrated scheme needs to be meticulously designed
to mitigate the severe co-channel interference.

When addressing the aforementioned problems, we en-
counter the following challenges. First, although utilizing
the computing capability of the BS for model training is
expected to accelerate the convergence, the involvement of
the BS complicates the convergence analysis of the training
process due to the need of rigorous mathematical knowledge
and skillful derivations [10], [17]. Second, since both the
datasets and local updates are transmitted over the non-ideal
wireless channels, their impacts on convergence should also
be quantified precisely [18]. Third, existing resource allocation
schemes designed for conventional communication of FL sys-
tems are not applicable to the collaborative learning framework
requiring the concurrent transmission of data samples and
local updates. Therefore, it is imperative to develop new
transceiver control algorithms that can further improve both
communication efficiency and learning performance of the
considered new learning framework.

A. Contributions and Organization

To leverage the underutilized computing resources at the
BS for improving learning performance, we propose a novel
semi-federated learning (SemiFL) paradigm by integrating the
conventional CL and FL into a two-tier framework. Since
many previous studies on FL solely focus on transmitting
local gradients, the existing communication strategies can
not directly satisfy the requirement of SemiFL for collect-
ing both local gradients and data samples. To address this
issue, we propose a novel JCC scheme to guarantee the
unique communication request of SemiFL in an efficient
manner. Specifically, at the devices, we combine AirComp
and NOMA techniques to enable the concurrent transmission
of data samples and local gradients. To gain deep insights
into SemiFL, we provide the theoretical analysis of SemiFL.
Then, we formulate an optimality gap minimization problem
by optimizing the transceivers. The main contributions of this
paper are summarized as follows:

• To improve the learning performance of existing FL, we
propose a harmonized SemiFL framework to orchestrates

CL and FL into a two-tier architecture. The global model
at the BS is updated by the hybrid gradient obtained from
both CL and FL. Different from conventional commu-
nication strategies for FL, we design a learning-centric
JCC transceiver structure to meet the unique transmission
requirement of SemiFL. At the transmitter, the devices
concurrently transmit local gradients and data samples via
a shared multiple access channel. At the receiver, the BS
first decodes the data samples for CL, and then aggregates
the local gradients over the air.

• We derive the optimality gap in closed form to char-
acterize the impact of wireless communication on the
convergence performance of SemiFL. We further extend
the result to two special cases, where the BS calculates
the CL gradient using all accumulated data samples in
the first case and adopts a decreasing learning rate in
the second case. By comparing the learning behaviors
between SemiFL, FL, and CL, we theoretically prove
that SemiFL is a more general learning paradigm than
the other two. To further accelerate the convergence of
SemiFL, we formulate a non-convex problem to minimize
the optimality gap by designing the transceivers while
satisfying the maximum transmit power of devices, the
communication latency of data transmission, and the
distortion of gradient aggregation.

• We propose a two-stage algorithm to solve the formu-
lated challenging problem. Specifically, we provide a
closed-form solution to the aggregation beamformer in
the single-antenna case. Moreover, the successive convex
approximation (SCA) method is employed to obtain the
decoding beamformers, where the closed-form optimal
solutions in each iteration are derived by solving the
Karush-Kuhn-Tucker (KKT) conditions.

Apart from the contributions, simulation results on two real-
world datasets confirm that:

1) The proposed two-stage algorithm outperforms bench-
marks in terms of aggregation mean square error (MSE)
and communication sum rate.

2) The proposed SemiFL achieves higher learning accuracy
and faster convergence than FL, which validates the
theoretical relation between SemiFL, FL, and CL.

3) Compared with state-of-the-art benchmarks, SemiFL
achieves up to 3.2% accuracy gain on the MNIST
dataset, and the effectiveness of the proposed two-stage
resource allocation algorithm is validated.

The rest of this paper is organized as follows. The system
model of SemiFL is described in Section II. Section III
presents the convergence analysis and formulates the prob-
lem. Section IV proposes the two-stage algorithm to jointly
optimize the transmit power and receive beamformers. Sec-
tion V presents simulation results, followed by conclusions in
Section VI.

Notations: Lower-case and upper-case boldface letters de-
note vectors and matrices, respectively. Lower-case letters and
upper-case cursive letters denote scalars and sets, respectively.
IN denotes the N × N identity matrix. | · | denotes the
cardinality of a set or the modulus of a complex scalar. (·)T,
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Fig. 1. A demonstration of the proposed SemiFL framework.

(·)H, and ∥·∥ denote transpose, conjugate transpose, and vector
2-norm, respectively. R, C, and ∅ denote real, complex, and
empty sets, respectively. ∇ denotes the gradient operator and
E[·] takes statistical expectation. ∪ and ∩ denote the union
and intersection of sets, respectively. log2(·) takes the base
two logarithm, and lim

x→∞
f(x) denotes the limit of f(x) as x

approaches infinity. Re{x} and ∠x denote the real part and
the angle of a complex scalar x, respectively.

II. SYSTEM MODEL

As depicted in Fig. 1, we consider a wireless network
comprising one Nr-antenna BS and K single-antenna devices.
Specifically, all devices that collect data samples and conduct
local learning form the first tier, while the BS performing
centralized learning serves as the second tier. The set of
devices is denoted by K = {1, 2, . . . ,K}.

A. SemiFL Framework

We consider a model training process with T communica-
tion rounds. In the t-th round, the k-th device collects multiple
data samples denoted by a dataset Dt,k, which is divided into
two disjoint subsets, i.e., Df,t,k containing Nf,k samples and
Dc,t,k containing Nc,k samples, satisfying Df,t,k ∪ Dc,t,k =
Dt,k and Df,t,k ∩Dc,t,k = ∅. Note that |Dt,k| = Nf,k+Nc,k.
Denote Dk = ∪Tt=1Dk,t as the dataset that encompasses all
data samples collected by the k-th device over T rounds. Local
devices aim to collaboratively train a shared global model
w ∈ RQ by minimizing the global empirical loss function
F (w) on the global dataset D = ∪kDk, which is given by

F (w) =
1

N

∑K

k=1

∑
n∈Dk

f(w;xk,n,yk,n), (1)

where xk,n and yk,n are the feature vector and the label
vector of a data sample, respectively, f(w;xk,n,yk,n) is
the loss function with respect to (w.r.t.) a data sample, and
N = |D| =

∑K
k=1

∑T
t=1(Nf,k + Nc,k) is the total amount

of data samples collected by all K devices over T rounds.
Different from conventional FL where the global model w is
merely updated by the aggregated local gradients, we propose
a SemiFL framework to minimize the global empirical loss
function F (w). Specifically, FL over devices and CL of the

BS are coordinated in a unified manner, and the global model
is updated by a combination of the resultant FL gradient and
CL gradient.

In the t-th round, limited by the local computing capa-
bility, the k-th device calculates the local gradient gf

t,k =

[gft,k,1, . . . , g
f
t,k,Q]

T ∈ RQ using the Nf,k data samples in
Df,t,k, given by

gf
t,k =

1

Nf,k

∑
n∈Df,t,k

gt,k,n, ∀k ∈ K, (2)

where gt,k,n ≜ ∇f(wt;xk,n,yk,n) is the sample-wise gradi-
ent at wt, and wt denotes the global model in the t-th round.
Note that the privacy of the data in Df,t,k can be preserved
naturally since the BS has no access to the raw data retained
by local devices. Apart from transmitting gf

t,k for aggregation,
the k-th device also uploads the data samples in Dc,t,k to
the BS. To mitigate privacy leakage, we employ a mixup
method, originally proposed in [19], to preserve privacy when
sending data to third parties [20]–[22]. For an arbitrary sample
{xt,k,n,yt,k,n} in Dc,t,k, the k-th device mixes it with another
sample labeled differently using a mixed ratio ϖ ∈ (0, 1)
drawn from a Dirichlet distribution, and then adds noise to the
mixed sample to enhance privacy preservation. Specifically,
the mixed data sample {x̄t,k,n, ȳt,k,n} is generated by

x̄t,k,n =ϖxt,k,n + (1−ϖ)xt,k,n′

+ n̄t,k,n,∀k ∈ K,∀n, n
′
∈ Dc,t,k, (3)

ȳt,k,n =ϖyt,k,n + (1−ϖ)yt,k,n′

+ n̄t,k,n,∀k ∈ K,∀n, n
′
∈ Dc,t,k, (4)

where yt,k,n ̸= yt,k,n′ , and n̄t,k,n denotes the Gaussian noise
whose strength can be adjusted to achieve a specific privacy
level [21]. Namely, the k-th device sends the mixed data
samples with noise to the BS so that the data privacy can
be preserved.

The BS accumulates all mixed data samples received, and
randomly selectsNc =

∑K
k=1Nc,k samples to form a dataset

Dc,t for calculating the CL gradient, given by

gc
t =

1

Nc

∑
n∈Dc,t

gt,n. (5)

Then, the BS aggregates the local gradients over the air. Let
ĝf
t ∈ RQ denote the aggregated gradient of FL. Next, the

BS calculates the global gradient ĝt for the t-th round as
a combination of the FL gradient and CL gradient, i.e., a
weighted average of ĝf

t and gc
t , given by

ĝt =
Nf

Nf +Nc
ĝf
t +

Nc

Nf +Nc
gc
t , (6)

where Nf =
∑K

k=1Nf,k is the total amount of data for FL
in the t-th round. Finally, the BS updates the global model
wt for the next round using a gradient descent method, i.e.,
wt+1 = wt − ηĝt, where η is the learning rate.

B. JCC Scheme

In order to meet the unique transmission requirement of
SemiFL, i.e., the collaborative transmission of local gradients
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Fig. 2. The block diagram of the designed JCC transceiver structure and signal processing flows for the SemiFL framework.

and data samples, we propose a JCC scheme which simultane-
ously implements AirComp and NOMA in a communication-
efficient manner. To this end, we design a novel transceiver
structure for supporting the combination of these two critical
techniques, as illustrated in Fig. 2. Specifically, the devices
transmit both local gradients and data samples over the same
time-frequency resources, while the BS first decodes the data
samples, and then aggregates the local gradients over the air.

In the t-th communication round, the signal pre-processing
of the k-th device is two-fold. Here, the local gradient gf

t,k is
first normalized to a vector g̃f

t,k = [g̃ft,k,1, . . . , g̃
f
t,k,Q]

T ∈ RQ

yielding E[g̃ft,k,q] = 0 and E[(g̃ft,k,q)2] = 1,∀k ∈ K, and then
transformed to a signal vector st,k = [st,k,1, . . . , st,k,Q]

T ∈
RQ. Concretely, similar to [23], the normalization procedure
is illustrated as follows:

1) Before the transmission of local gradients and data
samples, the k-th device calculates and transmits
two parameters to the BS, i.e., 1

Q

∑Q
q=1 g

f
t,k,q and

1
Q

∑K
k=1 (g

f
t,k,q)

2, where gft,k,q denotes the q-th entry
of the local gradient gf

t,k.
2) Upon receiving all 2K parameters uploaded

by K devices, the BS calculates the global
mean ḡt and the global variance σ̄2

t by
using ḡt = 1

K

∑K
k=1(

1
Q

∑Q
q=1 g

f
t,k,q) and

σ̄2
t = 1

K

∑K
k=1[

1
Q

∑Q
q=1(g

f
t,k,q)

2]− ḡ2t , respectively.
3) The BS stores ḡt and σ̄2

t for the de-normalization in the
post-processing, and broadcasts ḡt and σ̄2

t back to all
devices for the normalization in the pre-processing.

4) The k-th device normalizes the q-th entry of the local
gradient gf

t,k according to

g̃ft,k,q =
gft,k,q−ḡt

σ̄t
, q = 1, 2, . . . , Q, ∀k ∈ K, (7)

where the normalized g̃ft,k,q yields E[g̃ft,k,q] = 0 and
E[(g̃ft,k,q)2] = 1. Then, the k-th device constructs the
gradient signal vector as st,k =

Nf,k

Nf
g̃f
t,k.

Note that the communication overhead of the normalization is
2K parameters in each round. For another, the Nc,k data sam-
ples in Dc,t,k for uploading, represented in bits, generally have
different dimensions compared to the local gradient. However,
the signal vector of the local gradient st,k and the signal vector
of the data samples dt,k = [dt,k,1, . . . , dt,k,Q]

T ∈ RQ should
be aligned to have the same number of symbols, as they share
the same time-frequency resources. As presented before, each
dimension of the local gradient is normalized to a symbol
of st,k. To align dt,k with st,k, devices appropriately map
multiple bits of the data samples to a symbol of dt,k, and then
apply a proper zero padding scheme [24]. The q-th entry of
dt,k yields E[dt,k,q] = 0 and E[d2t,k,q] = 1. For simplicity, we
assume that the entries of st,k and dt,k are independent of each
other [25], i.e., E[st,k,qdt,k,q] = 0, q = 1, 2, . . . , Q, ∀k ∈ K.
Each communication round is equally divided into Q slots.
In the q-th slot of the t-th communication round, the devices
transmit the superposition of {st,k,q} and {dt,k,q} to the BS
after being processed by the parallel-to-serial (P/S) conversion.

At the BS side, the superposition signal received by each
antenna in the q-th slot of the t-th communication round is
independently downconverted to form the baseband superpo-
sition signal vector yt,q , as given by

yt,q =
∑K

k=1
pt,f,kht,kst,k,q︸ ︷︷ ︸

local gradients

+
∑K

k=1
pt,c,kht,kdt,k,q︸ ︷︷ ︸

data samples

+nt,q︸︷︷︸
noise

,

(8)

where pt,f,k ∈ C and pt,c,k ∈ C are the transmit power
allocation coefficients of local gradients and data samples,
respectively, nt,q ∼ CN (0, σ2INr ) is the additive white Gaus-
sian noise, and ht,k ∈ CNr is the channel coefficient vector
from the k-th device to the BS. We consider a block-fading
channel, where ht,k remains unchanged within a communi-
cation round but varies independently between rounds, and
assume the perfect channel state information is available [17].

As shown in Fig. 2, to decode data samples, the BS
performs receive beamforming [26] by multiplying yt,q with
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γt,k =
|fHt,k(pt,c,kht,k)|2∑K

k′=1,k′ ̸=k |fHt,k(pt,c,k′ht,k′)|2 +
∑K

k′=1

N2
f,k′

N2
f
|fHt,k(pt,f,k′ht,k′)|2 + σ2∥ft,k∥2

, ∀k ∈ K. (10)

a beamforming matrix containing K beamformers, i.e., Ft ≜
[ft,1, ft,2, . . . , ft,K ] ∈ CNr×K , thereby generating K separated
parallel data streams denoted by a vector d̂t,q = FH

t yt,q =

[d̂t,1,q, d̂t,2,q, . . . , d̂t,K,q]
T
∈ CK [25], [27]. The k-th data

stream for decoding the data samples from the k-th device
is given by

d̂t,k,q=fHt,kyt,q

=fHt,k(pt,c,kht,kdt,k,q)+fHt,k

(∑K

k′=1
pt,f,k′ht,k′st,k′,q

)
︸ ︷︷ ︸

interference of local gradients

+ fHt,k

(∑K

k′=1,k′ ̸=k
pt,c,k′ht,k′dt,k′,q

)
︸ ︷︷ ︸

interference of other data samples

+ fHt,knt,q,∀k ∈ K, (9)

which is independent of other data streams for decoding. As
a result, the signal-to-interference-plus-noise ratio (SINR) of
the k-th device, γt,k, is presented by (10) at the top of this
page. The decoded symbols are accumulated over Q slots to
recover signal vectors {dt,k} using the serial-parallel (S/P)
converter, and the uploaded data samples are recovered by
post-processing.

After removing all data sample signals from the superpo-
sition signal vector yt,q , the residual local gradients are free
from the interference of data samples. Then, the BS employs
another beamformer bt ∈ CNr to aggregate the local gradients
over the air, which is given by

ŝt,q=
∑K

k=1
pt,f,kb

H
t ht,kst,k,q + bH

t nt,q. (11)

Since the desired aggregation signal is st,q =
∑K

k=1 st,k,q , the
distortion between st,q and ŝt,q is measured by the MSE:

MSEt =E[|ŝt,q − st,q|2]

=
∑K

k=1

N2
f,k

N2
f

∣∣pt,f,kbH
t ht,k − 1

∣∣2 + ∥bt∥2σ2. (12)

Similarly, the aggregated gradient signals accumulated over
Q slots are rearranged in an estimation signal vector ŝt =
[ŝt,1, . . . , ŝt,Q]

T ∈ CQ using the S/P converter. Finally, the
BS post-processes ŝt to obtain the aggregated gradient by de-
normalization, ĝft,q = σ̄tŝt,q + ḡt, i.e.,

ĝft,q =
∑K

k=1

Nf,k

Nf

(
1− pt,f,kbH

t ht,k

)
ḡt+σ̄tb

H
t nt,q︸ ︷︷ ︸

de-normalization error due to the channel fading and noise

+
∑K

k=1

Nf,k

Nf
pt,f,kb

H
t ht,kg

f
t,k,q, q = 1, 2, . . . , Q, (13)

where ĝft,q is the q-th entry of the aggregated gradient of FL,
i.e., ĝf

t = [ĝft,1, . . . , ĝ
f
t,Q]

T.

III. CONVERGENCE ANALYSIS AND PROBLEM
FORMULATION

In this section, we provide the convergence analysis of the
proposed SemiFL by characterizing the optimality gap based
on commonly adopted assumptions. Then, we formulate a
problem to minimize the optimality gap by jointly optimizing
the transmit power allocation coefficients {pt,f,k} and {pt,c,k},
the aggregation beamformer bt, and the decoding beamform-
ers {ft,k}.

A. Convergence Analysis

To facilitate the convergence analysis, we impose the fol-
lowing standard assumptions on the global empirical loss
function F (w) and gradients, which have been extensively
employed by the works in [10], [17], [28]–[30].

Assumption 1 (µ-strongly convex). The global empirical loss
function F (w) is µ-strongly convex. Therefore, for any w,
w′ ∈ RQ and µ > 0, we have

F (w) ≥ F (w′) + (w −w′)
T∇F (w′) +

µ

2
∥w −w′∥2, (14)

where ∇F (w) is the gradient of the global empirical loss
function F (w) regarding w.

Assumption 2 (L-smooth). The global empirical loss function
F (w) is L-smooth. Therefore, for any w, w′ ∈ RQ and L > 0,
we have

F (w) ≤ F (w′) + (w −w′)
T∇F (w′) +

L

2
∥w −w′∥2. (15)

Assumption 3 (Bounded gradients). The squared 2-norms of
any local gradient and any sample-wise gradient are bounded.
Therefore, for constants G2 ≥ 0, ξ1 ≥ 0, and ξ2 > 0, we have

E
[
∥gf

t,k∥
2
]
≤G2, ∀k ∈ K, ∀t, (16)

∥gt,k,n∥2≤ξ1+ξ2∥∇F (wt)∥2, ∀k ∈ K, ∀n ∈ D, ∀t. (17)

Assumption 1 can be the foundation for deriving the cele-
brated Polyak-Lojasiewicz (PL) inequality [31], which will be
utilized in Appendix C. Assumption 3 bounds the norms of
gradients to facilitate the scaling operations during derivation.

The convergence analysis starts with characterizing the error
of the global gradient ĝt in the t-th round. By rewriting ĝt as
ĝt = ∇F (wt) − e and plugging it into the gradient descent
method mentioned at the end of Section II-A, the global model
update is rewritten as

wt+1 = wt − η (∇F (wt)− e) , (18)

where e denotes the error of the global gradient, given by

e=a1(∇F (wt)−gf
t︸ ︷︷ ︸

e1

)+a2(∇F (wt)−gc
t︸ ︷︷ ︸

e2

)+a1(g
f
t−ĝ

f
t︸ ︷︷ ︸

e3

). (19)
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Here, a1 =
Nf

Nf+Nc
, a2 = Nc

Nf+Nc
, gf

t =
∑K

k=1
Nf,k

Nf
gf
t,k is the

desired FL gradient without considering the aggregation error,
and ∇F (wt) = 1

N

∑K
k=1

∑
n∈Dk

gt,k,n is the ideal global
gradient of the global empirical loss function. One can find
that the global gradient error e can be decomposed into three
parts, i.e., e1, e2, and e3, which separately capture the primary
hostilities jeopardizing the convergence behavior of SemiFL.
Specifically, the error e1 is due to the limited computing
capabilities of devices, which restricts the amount of data
samples for calculating local gradients. Randomly selecting a
limited number of samples from all accumulated data samples
at the BS compromises the CL gradient and thus incurs the
error e2. The error e3 captures the impact of the undesirable
channel fading and noise on the aggregated gradient.

Based on [28] and [32], we now reveal how the error
e affects the convergence behavior of SemiFL between two
consecutive rounds in the following lemma.

Lemma 1. Suppose F (wt) satisfies Assumption 2, and let
learning rate η = 1/L. In the t-th round, we have

E [F (wt+1)] ≤E [F (wt)]−
1

2L
∥∇F (wt)∥2 +

2a21
L

E[∥e1∥2]

+
2a22
L

E[∥e2∥2] +
a21
L
E[∥e3∥2]. (20)

Proof: Please refer to Appendix A.
Next, we bound E[∥e1∥2], E[∥e2∥2], and E[∥e3∥2] based on

Assumption 3, as presented in the following lemma.

Lemma 2. Given Assumption 3, the squared 2-norms of
the errors, i.e., E[∥e1∥2], E[∥e2∥2], and E[∥e3∥2], are upper
bounded, respectively, by

E
[
∥e1∥2

]
≤N −Nf

Nf
(ξ1 + ξ2∥∇F (wt)∥2), (21)

E
[
∥e2∥2

]
≤N −Nc

Nc
(ξ1 + ξ2∥∇F (wt)∥2), (22)

E
[
∥e3∥2

]
≤4KG2

N2
f

∑K

k=1
N2

f,k

∣∣1− pt,f,kbH
t ht,k

∣∣2
+G2σ2∥bt∥2. (23)

Proof: Please refer to Appendix B.
Finally, based on Lemmas 1 and 2, we characterize the

convergence behavior of SemiFL framework by deriving the
optimality gap in Theorem 1.

Theorem 1 (Optimality gap of SemiFL). Suppose Assump-
tions 1, 2, and 3 hold and set learning rate η = 1

L . Let w∗

denote the optimal global model. Then, the optimality gap of
SemiFL after T rounds is given by:

E[F (wT+1)−F (w∗)] ≤ ρT1 E [F (w1)− F (w∗)]+ρ2
1−ρT1
1−ρ1

+
∑T

t=1
ρT−t
1 φt ({pf,k},b) ≜ ψSemiFL

T ({pf,k},b) , (24)

where ρ1 = 1 − µ
L + 4µξ2

Nf (N−Nf )+Nc(N−Nc)
L(Nf+Nc)2

,

ρ2 = 2ξ1
Nf (N−Nf )+Nc(N−Nc)

L(Nf+Nc)2
, and φt ({pf,k},b) =

4KG2 ∑K
k=1 N2

f,k|1−pt,f,kb
H
t ht,k|2

L(Nf+Nc)2
+

N2
fG

2σ2∥bt∥2

L(Nf+Nc)2
.

Proof: Please refer to Appendix C.

Remark 1 (The value range of ξ2). Note ξ2 should be
in the range (0,

(Nf+Nc)
2

4[Nf (N−Nf )+Nc(N−Nc)]
) to guarantee the

convergence of E[F (wT+1) − F (w∗)], while ensuring the
correctness of applying the PL inequality in (68). The reasons
are three-fold:

1) Since the stable convergence of ψSemiFL
T ({pf,k},b)

requires for 0 < ρ1 < 1, we have

(1− L

µ
)

(Nf +Nc)
2

4[Nf (N −Nf ) +Nc(N −Nc)]
< ξ2

<
(Nf +Nc)

2

4[Nf (N −Nf ) +Nc(N −Nc)]
. (25)

2) The term 1
2L − 2ξ2

Nf (N−Nf )+Nc(N−Nc)
L(Nf+Nc)2

in (68) should
be non-negative, which implies

ξ2 ≤
(Nf +Nc)

2

4[Nf (N −Nf ) +Nc(N −Nc)]
. (26)

3) It is known from Assumption 3 that ξ2 > 0.

As a result, we have 0 < ξ2 <
(Nf+Nc)

2

4[Nf (N−Nf )+Nc(N−Nc)]
.

For a constant ξ2 greater than the threshold
(Nf+Nc)

2

4[Nf (N−Nf )+Nc(N−Nc)]
, one can enlarge the threshold

by increasing Nc to satisfy the condition.

We extend the result in Theorem 1 to a special case where
the BS calculates the CL gradient using all data samples
accumulated in previous rounds, as given in Corollary 1.

Corollary 1 (Optimality gap using all accumulated data).
Given Assumptions 1, 2, and 3 as well as the learning rate
η = 1

L , suppose the BS uses all accumulated N̄c,t = tNc data
samples till the t-th round to calculate the CL gradient. Then,
the optimality gap of SemiFL after T rounds is given by:

E[F (wT+1)− F (w∗)] ≤

(
T∏

t=1

ρ̄1,t

)
E [F (w1)− F (w∗)]

+

T∑
t=1

(
T∏

i=t+1

ρ̄1,i

)
ρ̄2,t +

T∑
t=1

(
T∏

i=t+1

ρ̄1,i

)
φ̄t ({pf,k},b)

≜ ψ̄SemiFL
T ({pf,k},b) , (27)

where ρ̄1,t = 1 − µ
L + 4µξ2

Nf (N−Nf )+N̄c,t(N−N̄c,t)

L(Nf+N̄c,t)2
,

ρ̄2,t = 2ξ1
Nf (N−Nf )+N̄c,t(N−N̄c,t)

L(Nf+N̄c,t)2
, and φ̄t ({pf,k},b) =

4KG2 ∑K
k=1 N2

f,k|1−pt,f,kb
H
t ht,k|2

L(Nf+N̄c,t)2
+

N2
fG

2σ2∥bt∥2

L(Nf+N̄c,t)2
.

Proof: Please refer to Appendix D.
Since Nf (N−Nf )+N̄c,t(N−N̄c,t)

L(Nf+N̄c,t)2
≤ Nf (N−Nf )+Nc(N−Nc)

L(Nf+Nc)2

and (Nf + N̄c,t)
2 ≥ (Nf + Nc)

2,∀t ≥ 1, it
can be verified that ρ1 ≥ ρ̄1,t, ρ2 ≥ ρ̄2,t, and
φt ({pf,k},b) ≥ φ̄t ({pf,k},b) ,∀t ≥ 1. Hence, we have
ψ̄SemiFL
T ({pf,k},b) ≤ ψSemiFL

T ({pf,k},b). Corollary 1 in-
dicates that using all accumulated samples for calculating CL
gradient contributes to a smaller optimality gap of SemiFL.
Furthermore, we extend the optimality gap of SemiFL in
Theorem 1 to another specific case where a decreasing learning
rate is adopted [33], as given in Corollary 2.
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Corollary 2 (Optimality gap with a decreasing learning rate).
Given Assumptions 1 and 2, suppose the decreasing learning
rate in the t-th round is designed as ηt = Λ

t+τ , where Λ > 1
µ ,

and τ ≥ ΛL. Then, the optimality gap of SemiFL after T
rounds is given by:

E[F (wT+1)− F (w∗)] ≤ θT
T + τ + 1

, (28)

where θT = max{Λ(T+τ)E[∥eT ∥2]
2(Λµ−1) ,E[F (wT ) − F (w∗)](T +

τ)} and eT = ∇F (wT )− ĝT . When T →∞, one can obtain
E[F (wT+1)− F (w∗)]→ 0.

Proof: Please refer to Appendix E.
From Corollary 2, it can be confirmed that the optimality

gap of SemiFL converges to 0 with the convergence rate O( 1
T )

when applying a decreasing learning rate for a sufficiently
large T . Based on Theorem 1, Corollary 1, and Corollary 2, the
convergence of the proposed SemiFL under different settings
is proved.

In order to provide thorough insights into the relation
between SemiFL, FL, and CL, we first capture the convergence
behaviors of FL and CL, and then compare them with SemiFL
in Theorem 2. For comparison fairness, we stipulate that all
devices utilize Nf + Nc data samples to calculate the local
gradient in FL but transmits no data to the BS. Consequently,
the global model is trained by the aggregated gradient only.
For CL, we consider that all devices only upload Nf + Nc

data samples to the BS in each round but never perform local
training. Accordingly, the BS randomly selects Nf +Nc data
samples from its accumulated data to calculate the CL gradient
to update the global model.

Theorem 2 (Relation between SemiFL, FL, and CL). Given
Assumptions 1, 2, and 3 as well as the learning rate η = 1

L ,
the optimality gaps of FL and CL after T rounds are given by
(29) and (30), respectively.

E[F (wT+1)−F (w∗)] ≤ ρ̃T1 E [F (w1)−F (w∗)]+ρ̃2
1− ρ̃T1
1− ρ̃1

+
∑T

t=1
ρ̃T−t
1 φ̃t ({pf,k},b) ≜ ψFL

T ({pf,k},b) , (29)

E[F (wT+1)−F (w∗)] ≤ ρ̂T1 E [F (w1)−F (w∗)]+ρ̂2
1− ρ̂T1
1− ρ̂1

≜ ψCL
T , (30)

where ρ̃1 = 1 − µ
L + 8µξ2

N−(Nf+Nc)
L(Nf+Nc)

, ρ̃2 =

4ξ1
N−(Nf+Nc)
L(Nf+Nc)

, ρ̂1 = 1 − µ
L + µξ2

N−(Nf+Nc)
L(Nf+Nc)

,

ρ̂2 = ξ1
N−(Nf+Nc)
2L(Nf+Nc)

, and φ̃t ({pf,k},b) = G2σ2∥bt∥2

L +

4KG2 ∑K
k=1 (Nf,k+Nc,k)

2|1−pt,f,kb
H
t ht,k|2

L(Nf+Nc)2
. Then, we have the

following relation between SemiFL, FL, and CL:

ψCL
T ≤ψSemiFL

T ({pf,k},b)≤ψFL
T ({pf,k},b) . (31)

Proof: Please refer to Appendix F.
On the one hand, thanks to the CL empowered by the com-

puting capability of the BS, Theorem 2 proves that SemiFL
outperforms FL by achieving a smaller optimality gap. On the
other hand, CL achieves the smallest optimality gap among
the three learning frameworks, which can be regarded as a

performance upper bound. When retaining all Nc + Nf data
samples for local training, we obtain the optimality gap of
SemiFL, i.e., ψSemiFL

T ({pf,k},b), degenerates into that of
FL, i.e., ψFL

T ({pf,k},b). When dedicating all Nc + Nf data
samples to CL and ignoring the impact of wireless chan-
nels on gradient aggregation, the optimality gap of SemiFL,
i.e., ψSemiFL

T ({pf,k},b), reduces to that of CL, i.e., ψCL
T .

Therefore, Theorem 2 theoretically confirms that the proposed
SemiFL is a more general learning paradigm than FL and CL.

Remark 2 (Impact of wireless communication). Based on
Theorems 1 and 2, we have the following observations about
the impact of wireless communication on the optimality gaps.

• As T goes to infinity, the optimality gaps of SemiFL, FL,
and CL tend to the following three limits, respectively:

lim
T→∞

ψSemiFL
T ({pf,k},b) = lim

T→∞

T∑
t=1

ρT−t
1 φt({pf,k},b)

+
ρ2

1− ρ1
, (32)

lim
T→∞

ψFL
T ({pf,k},b) = lim

T→∞

T∑
t=1

ρ̃T−t
1 φ̃t({pf,k},b)

+
ρ̃2

1− ρ̃1
, (33)

lim
T→∞

ψCL
T =

ρ̂2
1− ρ̂1

. (34)

Due to the detrimental impact of the undesirable
wireless communication contained in φt ({pf,k},b)
and φ̃t ({pf,k},b), both ψSemiFL

T ({pf,k},b) and
ψFL
T ({pf,k},b) are fluctuating and can not converge

to a stable value even if T goes to infinity. This
reveals the significance and necessity of designing the
transceivers, i.e., the transmit power allocation and
receive beanformers, to reduce the optimality gap.

• The wireless factors in the distant past have marginal
impacts on the optimality gap than the recent ones. Since
0 < ρ1 < 1 and 0 < ρ̃1 < 1, it is obtained that
φ̃t ({pf,k},b) and φt ({pf,k},b) in early rounds have
much smaller weight coefficients based on (24) and (29).
This coincides with the observations in [17].

Furthermore, we also derive the optimality gaps of SemiFL
and FL over error-free wireless channels in the following
corollary. Note that the error-free wireless channels refer to the
case where there is no communication noise and the wireless-
related factors are perfectly designed such that local gradients
are aggregated without any error.

Corollary 3 (Optimality gaps over error-free channels). Given
Assumptions 1, 2, and 3 as well as learning rate η = 1

L ,
the optimality gap of SemiFL and FL over error-free wireless
channels are given, respectively, by

E [F (wT+1)−F (w∗)] ≤ ρT1 E [F (w1)−F (w∗)]+ρ2
1− ρT1
1− ρ1

,

(35)

E [F (wT+1)−F (w∗)] ≤ ρ̃T1 E [F (w1)−F (w∗)]+ρ̃2
1− ρ̃T1
1− ρ̃1

,

(36)
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Proof: In light of the description of error-free wireless
channels, we have ∥e3∥2 = 0. By plugging (21), (22), and
∥e3∥2 = 0 into (20), while recursively applying the result for
T times, we reach (35). Similarly, the optimality gap (36) can
be obtained by plugging (78) and ∥ẽ3∥2 = 0 into (77) and
recursively applying the result for T times.

Based on Corollary 3 and (34), we observe that, in the
error-free case, all three schemes of SemiFL, FL, and CL can
converge to the optimal model without any gaps under certain
conditions. Specifically, as T → ∞, we have the optimality
gaps without aggregation errors of SemiFL, FL, and CL tend to
be ρ2

1−ρ1
, ρ̃2

1−ρ̃1
, and ρ̂2

1−ρ̂1
, respectively. For SemiFL, if the rela-

tion between Nf and Nc satisfies (Nf−N
2 )

2
+(Nc−N

2 )
2
= N2

2 ,
we observe ρ2

1−ρ1
→0, i.e., the optimality gap of SemiFL tends

to be zero. For FL, as Nf +Nc→N , we have ρ̃2

1−ρ̃1
→0, i.e.,

the optimality gap of FL tends to be zero, which is consistent
with the theorem established in [10]. For CL, as Nf+Nc→N ,
we have ρ̂2

1−ρ̂1
→0, i.e., the optimality gap of CL tends to be

zero.

B. Problem Formulation

In the following, we aim to minimize the optimality gap
of SemiFL by optimizing the transmit power allocation co-
efficients {pt,f,k} and {pt,c,k}, as well as the aggregation
beamformer {bt} and decoding beamformers {ft,k}.

The transmit power of the k-th device is constrained by

E[|pt,f,kst,k,q + pt,c,kdt,k,q|2] =
N2

f,k

N2
f

|pt,f,k|2 + |pt,c,k|2

≤ Pmax, ∀k ∈ K, ∀t, (37)

where Pmax is the maximum transmit power at each device.
Suppose that each data sample has m bits. The k-th device
should complete the data transmission by the end of each
communication round. Thus, the communication latency of the
k-th device should not exceed the maximum allowable latency
Tc, given by

mNc,k

Wb1log2

(
1 +

γt,k

b2

) ≤ Tc, ∀k ∈ K, ∀t, (38)

where 0 < b1 < 1 and b2 > 1 are two constants standing for
the rate adjustment and the SINR gap [34], [35], respectively,
and W is the bandwidth.

To improve the convergence of SemiFL, we minimize
the optimality gap ψSemiFL

T ({pf,k},b) in Theorem 1 by
jointly optimizing the transmit power allocation and receive
beamformers. Since ρ1 and ρ2 in (24) are free from the
impact of transceiver design, it is equivalent to minimizing∑T

t=1 ρ
T−t
1 φt ({pf,k},b). Therefore, we formulate the opti-

mization problem as

min
{pt,f,k},{pt,c,k},

{bt},{ft,k}

T∑
t=1

ρT−t
1 φt ({pf,k},b) (39a)

s.t. MSEt ≤ ϵ,∀t, (39b)
(37), (38),

where ϵ denotes the MSE tolerance. Constraint (37) restricts
the transmit power of devices. Constraint (38) specifies the
latency requirement of NOMA-based data uploading. Con-
straint (39b) limits the distortion of AirComp-based gradient
aggregation.

Although problem (39) is an optimization problem over
T rounds, we observe that both the objective and con-
straints corresponding to different rounds are independent.
As a result, problem (39) can be equivalently decomposed
into T one-round optimization problems [36]. We turn to
solve the decomposed problems independently for each round.
Note that the problem decomposition empowers SemiFL with
the practicability to be implemented over wireless channels
varying between rounds. After removing constant terms in
the objective function, the problem in an arbitrary round is
rewritten as follows, where the subscript t is omitted.

min
{pc,k},{pf,k},

b,{fk}

K∑
k=1

4KN2
f,k

(Nf+Nc)2
∣∣1−pf,kbHhk

∣∣2+N2
fσ

2∥b∥2

(Nf+Nc)2
(40a)

s.t.
N2

f,k

N2
f

|pf,k|2 + |pc,k|2 ≤ Pmax, ∀k ∈ K, (40b)

γk ≥ γmin,k, ∀k ∈ K, (40c)
MSE ≤ ϵ, (40d)

where γmin,k = b2(2
(mNc,k/b1WTc) − 1),∀k ∈ K. Problem

(40) is non-convex due to the non-convexity of (40c) and the
concave terms in (40d). To make problem (40) tractable, we
propose a two-stage algorithm to solve it in the next section.

IV. TRANSCEIVER OPTIMIZATION

Since the objective function of the formulated problem (40)
is independent of decoding beamformers {fk}, we decompose
problem (40) into two subprblems and propose a two-stage al-
gorithm to solve them for each communication round. We first
jointly optimize the aggregation beamformer and the transmit
power allocation coefficients. Then, the decoding beamformers
are obtained by employing SCA to solve the decomposed
K independent problems, where optimal solutions in closed
forms are provided by solving KKT conditions.

A. Optimizing Aggregation Beamformer and Transmit Power

Given decoding beamformers {fk}, the first subproblem
aims to jointly optimize the power allocation coefficients
{pf,k} and {pc,k} as well as the aggregation beamformer b,
given by

min
{pf,k},
{pc,k},b

∑K

k=1

4KN2
f,k

(Nf+Nc)2
∣∣1−pf,kbHhk

∣∣2+N2
fσ

2∥b∥2

(Nf+Nc)2
(41)

s.t. (40b)− (40d).

Problem (41) is still non-convex due to the coupling of
optimization variables in the objective function and constraints
(40c) and (40d). We further decouple problem (41) into two
subproblems regarding the aggregation beamformer and the
transmit power allocation coefficients, respectively.
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1) Subproblem of Aggregation Beamformer Design: Given
decoding beamformers {fk} and the transmit power alloca-
tion coefficients {pf,k} and {pc,k}, the subproblem w.r.t. the
aggregation beamformer b is given by

min
b

bHA0b−2Re

{
bH

K∑
k=1

4KN2
f,kpf,k

(Nf +Nc)2
hk

}
(42a)

s.t. bHA1b−2Re

{
bH

K∑
k=1

N2
f,kpf,k

N2
f

hk

}
+ι−ϵ ≤ 0, (42b)

where ι =
∑K

k=1

N2
f,k

N2
f

, and A0 and A1 are given by

A0 =

K∑
k=1

4KN2
f,k|pf,k|2

(Nf +Nc)2
hkh

H
k +

N2
fσ

2

(Nf +Nc)2
INr

, (43)

A1 =

K∑
k=1

N2
f,k|pf,k|2

N2
f

hkh
H
k + σ2INr

. (44)

Problem (42) is convex w.r.t. b because of the positive
semidefinite matrices A0 and A1. Therefore, the problem can
be numerically solved using standard optimization toolboxes,
such as CVX [37]. In a special case where the BS has a single
antenna, we obtain the optimal aggregation beamformer in the
following lemma by solving KKT conditions.

Lemma 3. When the BS is single-antenna, the optimal aggre-
gation beamformer is given by

b∗ =
ĥ1
ω1

+

√
| ĥ1
ω1
|2 − ι− ϵ

ω1
ei∠(ω1ĥ0−ω0ĥ1), (45)

where ω0 =
∑K

k=1

4KN2
f,k|pf,k|2|hk|2

(Nf+Nc)2
+

N2
fσ

2

(Nf+Nc)2
, ω1 =∑K

k=1

N2
f,k|pf,k|2|hk|2

N2
f

+σ2, ĥ0 =
∑K

k=1

4KN2
f,k|pf,k|2hk

(Nf+Nc)2
, ĥ1 =∑K

k=1

N2
f,kpf,khk

N2
f

, and i =
√
−1.

Proof: Please refer to Appendix G.
2) Subproblem of Transmit Power Allocation: Given the

aggregation and decoding beamformers b and {fk}, the sub-
problem of transmit power allocation coefficients reduces to

min
{pf,k},{pc,k}

K∑
k=1

4KN2
f,k

(Nf +Nc)2
∣∣1− pf,kbHhk

∣∣2 (46)

s.t. (40b)− (40d),

which is also non-convex due to the indefinite Hessian matri-
ces of (40c) and (40d).

With reference to [38], we have Re{pf,kbHhk} ≤
|pf,k||bHhk|. As a result, it is obtained that |1−pf,kbHhk|2 =
1+ |pf,k|2|bHhk|2− 2Re{pf,kbHhk} ≥ (1− |pf,k||bHhk|)2,
where the equality holds if ∠pf,k +∠(bHhk) = 0. Therefore,
we determine the angles of {pf,k} as

∠pf,k = −∠(bHhk), ∀k ∈ K. (47)

Consider that the angles of {pc,k} are independent of problem
(46). For simplicity, we determine the angles of {pc,k} by

∠pc,k = 0, ∀k ∈ K. (48)

Based on the obtained angles, we perform variable substitu-
tions by letting αk = |pf,k|, ∀k ∈ K and βk = |pc,k|2, ∀k ∈
K. Consequently, problem (46) is rewritten as

min
{αk},
{βk}

∑K

k=1

4KN2
f,k

(Nf +Nc)2
(
1− αk|bHhk|

)2
(49a)

s.t.
N2

f,k

N2
f

α2
k + βk − Pmax ≤ 0,∀k ∈ K, (49b)

−βk
∣∣fHk hk

∣∣2+γmin,k(
∑K

k′=1

N2
f,k′

N2
f

α2
k′ |fHk hk′ |2

+
∑K

k′=1,k′ ̸=k
βk′ |fHk hk′ |2+σ2∥fk∥2)≤0,∀k ∈ K,(49c)∑K

k=1

N2
f,k

N2
f

(1−αk|bHhk|)2+∥b∥2σ2−ϵ≤0, (49d)

βk ≥ 0, αk ≥ 0,∀k ∈ K. (49e)

Due to the positive semidefinite Hessian matrices of the
objective and constraints, problem (49) is jointly convex w.r.t.
{αk} and {βk}, and thus can be numerically solved. Finally,
the transmit power allocation coefficients are recovered by

p∗f,k = αke
i∠pf,k , ∀k ∈ K, (50)

p∗c,k =
√
βke

i∠pc,k , ∀k ∈ K. (51)

B. Optimizing Decoding Beamformers
Given the power coefficients {pf,k} and {pc,k}, as well

as the aggregation beamformer b, the second subproblem
attempts to find feasible decoding beamformers {fk}, which
is rewritten as

find
{fk}

{fk} (52a)

s.t. fHk A2,kfk ≤ 0,∀k ∈ K, (52b)

where A2,k is given by

A2,k = −|pc,k|2hkh
H
k + γmin,k

(∑K

k′=1

N2
f,k′

N2
f

|pf,k′ |2hk′hH
k′

+
∑K

k′=1,k′ ̸=k
|pc,k′ |2hk′hH

k′ + σ2INr

)
,∀k ∈ K. (53)

Considering the independence of constraints among devices,
we decompose (52) into K independent problems w.r.t. each
device. With the aim of increasing the individual data rate 1

, we introduce an auxiliary variable νk ≤ 0 to transform the
problem of the k-th device as follows [40]:

min
fk,νk≤0

νk (54a)

s.t. fHk A2,kfk − νk ≤ 0, (54b)

which is a non-convex problem due to the indefinite matrix
A2,k in constraint (54b).

1All devices ought to complete their data sample transmissions within the
same time duration when NOMA is employed [39]. However, increasing the
individual data rate might lead to misaligned transmission latency among
devices. To address this issue, the number of bits used to represent a data
sample at each device, i.e., m bits, should be carefully adjusted in terms of
the obtained individual data rate to align the data sample transmission latency
of different devices.
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Algorithm 1 A Two-Stage Algorithm for Solving (40)

1: Input: Feasible solutions ({p(0)f,k}, {p
(0)
c,k},b(0), {f (0)k }), the

maximum number of iterations N , the convergence accu-
racy ε, n = 0, and n′ = 0.

2: repeat
3: Update n← n+ 1.
4: Given {p(n−1)

f,k },{p(n−1)
c,k } and {f (0)k }, obtain b(n) by

solving problem (42).
5: Given b(n) and {f (0)k }, calculate ∠p(n)f,k,∀k ∈ K by (47)

and ∠p(n)c,k ,∀k ∈ K by (48).
6: Given b(n), {f (0)k }, obtain {α(n)

k } and {β(n)
k } by solv-

ing problem (49).
7: Recover p(n)f,k,∀k∈K by (50) and p(n)c,k ,∀k∈ K by (51).

8: until n ≥ N or |U(n)−U(n−1)|
|U(n)| ≤ ε

9: repeat
10: Update n′ ← n′ + 1.
11: Given {p(n)f,k}, {p

(n)
c,k}, b(n) and {f (n

′−1)
k }, obtain

f
(n′)
k ,∀k ∈ K by (57) and ν(n

′)
k ,∀k ∈ K by (58).

12: until n′ ≥ N or |νk
(n′)−νk

(n′−1)|
|νk

(n′)| ≤ ε

13: Output: The solution ({p(n)f,k}, {p
(n)
c,k}, b(n), {f (n

′)
k }).

We employ the SCA method to solve problem (54). The
surrogate function of fHk A2,kfk, i.e., g(fk|f (n)k ), is created as
follows [41]:

g(fk|f (n)k ) =fHk Mkfk + 2Re{fHk (A2,k −Mk)f
(n)
k }

+ (f
(n)
k )H(Mk −A2,k)f

(n)
k , ∀k ∈ K, (55)

where the matrix Mk satisfies Mk ⪰ A2,k,∀k ∈ K, and
f
(n)
k is the result obtained at the n-th iteration of SCA. By

substituting (55) into (54b), we convexify problem (54) as

min
fk,νk≤0

νk (56a)

s.t. g(fk|f (n)k )− νk ≤ 0, (56b)

By solving KKT conditions, the closed-form optimal solutions
to problem (56) is provided in the following lemma.

Lemma 4. The optimal solutions to problem (56) are given
by

f∗k = M−1
k (Mk −A2,k)f

(n)
k ,∀k ∈ K (57)

ν∗k = (f
(n)
k )HA2,kM

−1
k (Mk −A2,k)f

(n)
k ,∀k ∈ K. (58)

Proof: Please refer to Appendix H.

C. Algorithm, Convergence and Complexity

The proposed two-stage algorithm for solving problem
(40) is summarized in Algorithm 1, where the superscript n
denotes the n-th iteration and U denotes the value of (40a).
In light of the non-increase and non-negativity of objective
(40a) over iterations, the convergence of Algorithm 1 can be
confirmed based on the Monotone Bounded Theorem [42].
By adopting the standard interior-point (SIP) method when
invoking CVX, the worst-case complexity of Algorithm 1 is

given by O(NN1N
3
r + 8NN2K

3 +KN), where N1 and N2

are the permitted maximum iterations of SIP for problems (42)
and (49), respectively. Specifically, O(N1N

3
r ) and O(8N2K

3)
present the complexities of solving problems (42) and (49),
respectively. In terms of the closed-form solution in (57), the
complexity for solving fk is O(1).

V. SIMULATION RESULTS

A. Simulation Setup

We consider a SemiFL system with a radius of 100 m,
wherein K = 10 devices are randomly located. The BS
equipped with Nr = 16 antennas is located at the coordinate
(0, 0, 10) m. The large-scale fading coincides with that in [43],
and consider a Rician factor κ = 2 for the small-scale fading.
The transmission bandwidth is W = 5 MHz. The noise power
is σ2 = −80 dBm, and the maximum transmit power is
Pmax = 30 dBm. The rate adjustment and the SINR gap are
set as b1 = 0.905 and b2 = 1.34 [34], respectively. Other
parameters are set as ϵ = 0.5, N = 200, and ε = 0.01.

We verify the performance of SemiFL by conducting
classification experiments on the MNIST and CIFAR-10
datasets [44]:

1) For the MNIST dataset, each data sample comprises a
28 × 28 gray-scale image and a 10-dimensional label.
Representing each entry by 16 bits, we set m= (28×
28 + 10) × 16 = 12, 704 bits. The global model is a
fully-connected multilayer perceptron (MLP) with a 50-
neuron hidden layer, which has Q = 39, 760 parameters
in total. When training the MLP using SemiFL, the MSE
loss function is adopted and the learning rate is η =
0.01.

2) For the CIFAR-10 dataset, each data sample consists of
a 32× 32× 3 color image and a 10-dimensional label,
which contains m = (32× 32× 3+ 10)× 16 = 49, 312
bits. We utilize a 9-layer convolutional neural network
(CNN) with Q = 116, 906 parameters as the global
model for classification. There are three convolutional
layers with ReLU activation, three max pooling layers
of size 3 × 3, two fully-connected layers with ReLU
activation, and one softmax output layer in the CNN.
The three convoltion layers contains 32, 32, and 64
kernels of size 5×5, respectively. There are 64 and 10
neurons in the two fully connected layers, respectively.
We adopt the cross-entropy loss function and set the
learning rate as η=0.1 to train the CNN using SemiFL.

For the above two classification experiments, we consider
T = 1, 000 training rounds with the maximum communication
allowable latency Tc = 500 ms. Each device independently
and randomly draws Nf,k+Nc,k =24 data samples from the
corresponding training set in each round. Then, Nf,k = 16
samples are retained locally for FL, and Nc,k = 8 samples
are uploaded to the BS for CL. The classification accuracy is
evaluated on the entire test set.

B. Evaluation of Communication Metrics

In Fig. 3, we plot the convergence behavior of Algorithm 1
in comparison with three benchmarks, including: i) the BS
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Fig. 3. Comparison of convergence behaviors. Fig. 4. Empirical CDF of the sum rate.

Fig. 5. MSE and sum rate versus the number of receive antennas under
different schemes.

Fig. 6. Cumulative objective value versus the number of communication
rounds under different schemes.

configures the aggregation beamformer as a minimum MSE
(MMSE) receiver [45]; ii) devices employ uniform-forcing
(UF) transmitters [46]; iii) the aggregation beamformer and
the transmission power allocation coefficients are solved using
alternating optimization (AO) [47]. It is seen that the objective
value of (40a) monotonously decreases with iterations and
finally reaches the stationary point. In particular, Algorithm 1
effectively reduces the optimality gap and outperforms the
benchmarks by converging to the lowest objective value.

In Fig. 4, we plot the empirical cumulative distribution
function (CDF) of the sum rate for 1, 000 trials. We employ
the sum rate as another metric to evaluate the performance of
data transmission, which is defined by the sum rates of each
device, i.e.,

∑K
k=1Wb1 log2

(
1 + γk

b2

)
(bps). We consider four

beamforming schemes as benchmarks: i) the difference-of-
convex-functions (DC) [14] method, where matrix lifting is
employed to solve fk and the rank constraint is approximated
by its linearization; ii) semidefinite relaxation (SDR) [48],
where the rank constraint is simply dropped; iii) maximum

ratio combining (MRC) [49], where fk is configured as hH
t,k;

iv) equal-gain combining (EGC), where fk is set as 1 ∈ CNr .
It is noticed that Algorithm 1 is the right-most among all
curves and achieves the highest sum rate. This is because SCA
circumvents the performance loss due to matrix approximation
and decomposition. Additionally, EGC even dissatisfies the
rate request because of the static configuration property.

In Fig. 5, we show the impacts of the number of receive
antennas on the sum rate and MSE, where the blue dashed
curves refer to the MSE performance and the brown solid
curves represent the sum rate performance. It is seen that
equipping the BS with more receive antennas results in a
lower MSE and a higher sum rate. Meanwhile, Algorithm 1
outperforms benchmarks in MSE and attains the highest sum
rate. Despite the comparable sum rate of SDR to Algorithm 1,
SDR confronts a quartic complexity regarding Nr [48], which
is much more time-consuming than the closed-form solution
to fk. This confirms the practicability of Algorithm 1 in terms
of the performance and cost.
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(a) Classification accuracy of training an MLP on the MNIST dataset. (b) Training loss of training an MLP on the MNIST dataset.

(c) Classification accuracy of training a CNN on the CIFAR-10 dataset. (d) Training loss of training a CNN on the CIFAR-10 dataset.

Fig. 7. Learning performance of SemiFL and benchmarks on the MNIST and CIFAR-10 datasets.

In Fig 6, we plot the cumulative objective value of
(40a) attained by Algorithm 1 and benchmarks, wherein a
lower cumulative objective value indicates a better conver-
gence behavior. To showcase the advantage of the proposed
power allocation method, two schemes are considered as
benchmarks: i) maximum available transmit power (MATP),
where pf,k =

√
(N2

f /N
2
f,k)(Pmax − |pc,k|2)e−i∠bHhk ,∀k ∈

K; ii) equal transmit power (ETP), where pf,k =
(Nf/Nf,k)

√
Pmax/2,∀k ∈ K, pc,k =

√
Pmax/2,∀k ∈ K,

b and {fk} are obtained by solving problems (42) and (56),
respectively. It can be observed that Algorithm 1 significantly
outperforms MATP and ETP by achieving a lower cumula-
tive objective value, thereby implying a smaller convergence
optimality gap. This is attributed to the effectiveness of
Algorithm 1 in adapting the transmit power of devices to
varying channel conditions synthetically, which achieves better
aggregation of local gradients for a reduced optimality gap.

C. Classification Experiments on Real-World Datasets

In this subsection, we examine the effectiveness of SemiFL
by conducting classification experiments on the MNIST and
CIFAR-10 datasets. We consider the following five learning
benchmarks for comparison:

1) FL: The devices merely transmit local gradients to the
BS over the same time-frequency resources in each
round, i.e., Nf,k = 24 and Nc,k = 0,∀k ∈ K. The
BS aggregates local gradients over the air and updates
the global model with the aggregated gradient.

2) CL: The devices only transmit all collected data samples
in each round to the BS for CL, i.e., Nf,k = 0 and
Nc,k = 24,∀k ∈ K. The BS calculates the gradient
using a batch of its accumulated data samples and
updates the global model accordingly.

3) Hybrid federated and centralized learning (HFCL) [9]:
The devices are divided into active and passive devices,
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Fig. 8. Training process comparison of SemiFL with state-of-the-art learning
frameworks on the MNIST dataset.

Fig. 9. Training process comparison between Algorithm 1 and resource
allocation benchmarks on the MINIST dataset.

where the former uploads local models to the BS for
FL while the latter sends the entire dataset for CL. The
learning process does not begin until all passive devices
finish uploading datasets to the BS. We set half of the
devices as active devices and the other half as passive
devices.

4) HFCL with increased computation-per-client (HFCL-
ICpC) [9]: The only difference between this scheme and
HFCL is that, during the data transmission of passive
devices, active devices train their own models locally
for multiple epochs.

5) HFCL with sequential data transmission (HFCL-
SDT) [9]: The only difference between this scheme and
HFCL is that, passive devices simultaneously transmit
a small part of their data sets to the BS for CL while
active devices uploading local models in each round.
The transmission of passive devices ceases once their
entire datasets have been transmitted.

To guarantee fairness, the transmit power coefficients of the
active devices and the aggregation beamformer are similarly
configured as the first half of the SemiFL devices, and the
uploaded data samples from the passive devices are also
perfectly decoded like SemiFL.

In Fig. 7, we plot the learning performance of SemiFL and
benchmarks when training an MLP on the MNIST dataset and
a CNN on the CIFAR-10 dataset. It is worth mentioning that all
schemes use the same number of data samples in each round
to guarantee the fairness. It is observed that SemiFL achieves
moderate classification accuracy and training loss between
FL and CL in both training settings. This validates that the
proposed SemiFL is a more general learning framework than
FL and CL, as demonstrated in Theorem 2. Moreover, it can
be seen that higher accuracy and lower loss can be achieved
if more data samples are uploaded to the BS for calculating
the CL gradient. The reason is that the detrimental impact
of the wireless channel in aggregation is compensated by the
increasing data samples for CL.

In Fig. 8, we compare the training process of SemiFL on

the MNIST dataset with three state-of-the-art hybrid learning
frameworks. For comparison fairness, active devices utilize the
same batch size as SemiFL devices to train their local models,
and the BS employs the gradient descent base on all samples
from passive devices. Despite the higher initial accuracy of
HFCL-ICpC due to the local updates in advance, SemiFL
eventually outperforms the benchmarks. It is seen that SemiFL
attains 1.3% accuracy gain regarding HFCL-ICpC, which can
be enlarged to 3.2% if more samples are dedicated for CL.
This verifies the learning superiority of the proposed SemiFL
in terms of the classification accuracy.

In Fig. 9, we plot the classification accuracy achieved
by Algorithm 1 and resource allocation benchmarks when
training an MLP on the MNIST dataset using SemiFL.
Apart from the aforementioned MATP and ETP schemes,
the following two resource allocation schemes are em-
ployed as benchmarks: i) random transmit power (RTP),
where pf,k is randomly drawn from the available range
(0,
√
(N2

f /N
2
f,k)(Pmax − |pc,k|2)],∀k ∈ K, and b is obtained

by solving problem (42); ii) equal gain combination (EGC),
where b = 1 ∈ CNr . For comparison fairness, the allocation
of other resources except those specified above is the same
as Algorithm 1, and all schemes use the same amount of
data samples in each round. In Fig. 9, it is seen that Algo-
rithm 1 outperforms other benchmarks by obtaining higher
accuracy. The result verifies the advantage of Algorithm 1 in
terms of classification accuracy, which is credited to the joint
optimization of the transceivers. It is noteworthy that though
Algorithm 1 significantly outperforms MATP and ETP in
Fig. 6, the superiority in terms of classification accuracy is less
pronounced. This is because the decrease in convergence opti-
mality gap does not correspond strictly to the same degree of
increase in accuracy. Moreover, one can observe from MATP
and ETP schemes that simply exhausting all transmit power
for transmitting local gradients can result in reduced accuracy.
This is because poor power control aggravates the distortion
of the aggregated signal, which reflects the effectiveness of
Algorithm 1 in allocating transmit power again.
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VI. CONCLUSION

In this paper, we proposed SemiFL, a hybrid learning
paradigm in a two-tier framework. The conventional FL and
CL were integrated into a harmonized architecture for improv-
ing the learning performance. To satisfy the distinct transmis-
sion requirement of SemiFL, we designed a novel transceiver
structure that incorporated NOMA and AirComp to support
the JCC principle, which enabled the collaborative uploading
of local gradients and data samples. Then, our theoretical
analysis revealed the detrimental effect of poorly configured
wireless factors on the convergence of SemiFL, and proved
that SemiFL is more general than FL and CL. In particular, we
further extended the convergence analysis to two special cases,
and demonstrated that SemiFL over error-free channels could
converge to the optimum without any gap once the amount of
data samples satisfied specific conditions. Next, we formulated
a non-convex problem to minimize the optimality gap by
jointly optimizing the transmitters and receivers. To solve the
problem, we proposed a two-stage algorithm, where closed-
form optimal beamformers were provided. Experiment results
on real-world datasets confirmed the theoretical analysis, and
illustrated that SemiFL outperformed FL and state-of-the-art
benchmarks in learning performance. Moreover, the proposed
JCC principle validated its advantage by achieving smaller
MSE, higher sum rate, and better classification accuracy,
compared with classical transceiver configuration schemes.

APPENDIX A
PROOF OF LEMMA 1

By plugging w = wt+1 and w′ = wt into (15), we have

F (wt+1) ≤F (wt) + (wt+1 −wt)
T∇F (wt)

+
L

2
∥wt+1 −wt∥2

(a)
=F (wt)− η∥∇F (wt)∥2 + ηeT∇F (wt)

+
Lη2

2
∥∇F (wt)− e∥2

(b)
=F (wt)−

1

2L
∥∇F (wt)∥2 +

1

2L
∥e∥2, (59)

where (a) comes from plugging (18) into the right-hand side
of (59), and (b) stems from letting η = 1/L. From (19), it
follows that

∥e∥2 =∥a1(∇F (wt)− gf
t ) + a2(∇F (wt)− gc

t )

+ a1(g
f
t − ĝf

t )∥2
(a)

≤2∥a1(∇F (wt)− gf
t ) + a2(∇F (wt)− gc

t )∥2

+ 2a21∥g
f
t − ĝf

t ∥2
(b)

≤4a21∥∇F (wt)− gf
t ∥2 + 4a22∥∇F (wt)− gc

t∥2

+ 2a21∥g
f
t − ĝf

t ∥2. (60)

Here, (a) and (b) come from the Cauchy-Schwarz inequality
and triangle inequality, respectively. Finally, we have (20) by
plugging (60) into (59) and taking the expectation on both
sides. This completes the proof.

APPENDIX B
PROOF OF LEMMA 2

Based on definitions of ∇F (wt) and gf
t , we first bound

∥e1∥2 as follows:

∥e1∥2 =∥∇F (wt)− gf
t ∥2

=

∥∥∥∥ 1

N

∑K

k=1

∑
n∈Dk

gt,k,n

− 1

Nf

∑K

k=1

∑
n∈Df,t,k

gt,k,n

∥∥∥∥2
(a)

≤ 1

NN2
f

[∑
n∈(∪kDf,t,k)

(Nf −N)2∥gt,k,n∥2

+
∑

n∈D/(∪kDf,t,k)
N2

f ∥gt,k,n∥2
]

(b)

≤
Nf (Nf −N)2+(N −Nf )N

2
f

NN2
f

(
ξ1+ξ2∥∇F (wt)∥2

)
=
N −Nf

Nf
(ξ1 + ξ2∥∇F (wt)∥2), (61)

where (a) holds because of the triangle inequality and Cauchy-
Schwarz inequality, and (b) comes from Assumption 3. By
taking the expectation on both sides of (61), we reach (21).

Similarly, ∥e2∥2 can be bounded as follows:

∥e2∥2 =∥∇F (wt)− gc
t∥2

=∥ 1
N

∑K

k=1

∑
n∈Dk

gt,k,n −
1

Nc

∑
n∈Dc,t

gt,n∥2

≤ 1

NN2
c

[∑
n∈Dc,t

(Nc−N)2∥gt,k,n∥2

+
∑

n∈D/Dc,t

N2
c ∥gt,k,n∥2

]
≤N −Nc

Nc
(ξ1+ξ2∥∇F (wt)∥2). (62)

We are able to obtain (22) by taking the expectation on both
sides of (62).

Based on gf
t =

∑K
k=1

Nf,k

Nf
gf
t,k and (13), we rewrite ∥e3∥2

as follows:

∥e3∥2 =∥gf
t − ĝf

t ∥2

=
∑Q

q=1

∣∣∣∣∑K

k=1
ζk(g

f
t,k,q − ḡt)− σ̄tb

H
t nt,q

∣∣∣∣2, (63)

where ζk = (Nf,k/Nf )(1− pt,f,kbH
t ht,k). Taking the expec-

tation w.r.t. {nt,q} on both sides, we have

E[∥e3∥2] =
∑Q

q=1

∣∣∣∣∑K

k=1
ζk(g

f
t,k,q − ḡt)

∣∣∣∣2
+Qσ̄2

t σ
2∥bt∥2

(a)

≤
∑Q

q=1
(
∑K

k=1
|ζk|2)(

∑K

k=1
|gft,k,q − ḡt|

2)

+Qσ̄2
t σ

2∥bt∥2
(b)

≤2(
∑K

k=1
|ζk|2)(

∑K

k=1

∑Q

q=1
|gft,k,q|

2+KQ|ḡt|2)

+Qσ̄2
t σ

2∥bt∥2, (64)

where (a) and (b) are due to the Cauchy-Schwarz inequality.
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Based on definitions of ḡt and σ̄2
t in Section II-B, we bound

them as follows:

|ḡt|2
(a)

≤ 1

KQ

∑K

k=1

∑Q

q=1
(gft,k,q)

2

(b)
=

1

KQ

∑K

k=1
∥gf

t,k∥
2, (65)

σ̄2
t ≤

1

KQ

∑K

k=1

∑Q

q=1
(gft,k,q)

2

=
1

KQ

∑K

k=1
∥gf

t,k∥
2, (66)

where (a) comes from the Cauchy-Schwaz inequality, and (b)
holds because

∑Q
q=1 |g

f
t,k,q|2 = ∥gf

t,k∥2. Based on (65) and
(66), we further derive (64) as

E[∥e3∥2] ≤4
(∑K

k=1
|ζk|2

)(∑K

k=1
∥gf

t,k∥
2

)
+
σ2∥bt∥2

K

∑K

k=1
∥gf

t,k∥
2

(a)

≤ 4KG2

N2
f

∑K

k=1
N2

f,k|1− pt,f,kbH
t ht,k|2

+G2σ2∥bt∥2, (67)

where (a) comes from taking the expectation w.r.t. ∥gf
t,k∥2

on both sides of (67) while utilizing Assumption 3. This
completes the proof.

APPENDIX C
PROOF OF THEOREM 1

By plugging the three upper bounds in Lemma 2 into
Lemma 1, we have

E [F (wt+1)] ≤ E [F (wt)] + 2ξ1
Nf (N−Nf )+Nc(N−Nc)

L(Nf +Nc)2

+
4KG2

∑K
k=1N

2
f,k

∣∣1−pt,f,kbH
t ht,k

∣∣2+N2
fG

2σ2∥bt∥2

L(Nf+Nc)2

−
[
1

2L
−2ξ2

Nf (N−Nf )+Nc(N−Nc)

L(Nf+Nc)2

]
∥∇F (wt)∥2. (68)

Then, we minimize the left-hand side of (14) by plugging in
w = w∗, while minimizing the right-hand side of (14) by
setting w′ = wt and w = wt − 1

µ∇F (wt). As a result, we
have the following PL inequality [31]:

∥∇F (wt)∥2 ≥ 2µ (F (wt)− F (w∗)) . (69)

By plugging (69) into (68), we have

E [F (wt+1)] ≤ E [F (wt)] + φt ({pf,k},b) + ρ2

−
[
µ

L
− 4µξ2

Nf (N−Nf )+Nc(N−Nc)

L(Nf+Nc)2

]
(F (wt)−F (w∗)).

(70)

Subtracting F (w∗) and taking the expectation on both sides
of (70), we have

E [F (wt+1)− F (w∗)] ≤ρ1E [F (wt)− F (w∗)]

+ ρ2 + φt ({pf,k},b) . (71)

Recursively applying (71) for t times, it holds that

E [F (wt+1)− F (w∗)] ≤ρt1E [F (w1)− F (w∗)]

+ ρ2
1− ρt1
1− ρ1

+
∑t−1

i=0
ρi1φt−i ({pf,k},b). (72)

We reach (24) by setting t = T . This completes the proof.

APPENDIX D
PROOF OF COROLLARY 1

When the BS uses all accumulated N̄c,t =

tNc = t
∑K

k=1Nc,k data samples till the t-th
round for CL, the CL gradient is calculated by
ḡc
t = (1/N̄c,t)

∑t
i=1

∑K
k=1

∑
n∈Dc,i,k

gi,k,n. Accordingly,
the global gradient of the t-th round is re-calculated by
ĝt = ā1,tĝ

f
t + ā2,tḡ

c
t , where ā1,t = Nf/(Nf + N̄c,t) and

ā2,t = N̄c,t/(Nf + N̄c,t). As a result, the gradient error e2
is rewritten as e2,t =∇F (wt)−ḡc

t for the t-th round, which
proves to be bounded as follows based on (62):

E[∥e2,t∥2] ≤
N − N̄c,t

N̄c,t
(ξ1 + ξ2∥∇F (wt)∥2),∀t. (73)

By plugging ā1,t, ā2,t, and (73) into Lemma 1, we have
(27) after applying the same mathematical derivation in Ap-
pendix C. This completes the proof.

APPENDIX E
PROOF OF COROLLARY 2

By substituting w = wt+1 and w′ = wt into (15), we have

F (wt+1)− F (wt) ≤− ηtĝT
t ∇F (wt) +

Lη2

2
∥ĝt∥2

=
ηt
2
(Lηt − 1) ∥ĝt∥2 −

ηt
2
∥∇F (wt)∥2

+
ηt
2
∥et∥2

(a)

≤ − ηt
2
∥∇F (wt)∥2 +

ηt
2
∥et∥2, (74)

where (a) is because τ ≥ ΛL so that ηt = Λ
t+τ ≤

1
L . By

applying the PL inequality in (69) to the right-hand side and
taking the expectation on both sides, while plugging ηt= Λ

t+τ

and θt =max{Λ(t+τ)E[∥et∥2]
2(Λµ−1) ,E[F (wt)−F (w∗)](t+τ)}, we

obtain

E[F (wt+1)− F (w∗)] ≤ t+ τ − 1

(t+ τ)2
θt

− Λµ−1
(t+τ)2

[
θt −

Λ(t+ τ)E[∥et∥2]
2(Λµ− 1)

]
(b)

≤ θt
(t+ τ + 1)

, (75)

where (b) is due to the definition of θt and t+τ−1
(t+τ)2 ≤

1
t+τ+1 .

We have (28) by setting t = T .
With sufficient training rounds and careful optimization of

transceivers, one can suppose that limt→∞ E[∥et∥2] = 0. This
implies that there is a t̃ > 0 such that Λ(t+τ)E[∥et∥2]

2(Λµ−1) ≤
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E[F (wt)− F (w∗)](t+ τ),∀t ≥ t̃. Therefore, one can verify
that

E[F (wt+1)− F (w∗)] ≤E[F (wt)− F (w∗)](t+ τ)

t+ τ + 1

≤E[F (wt̃)− F (w∗)](t̃+ τ)

t+ τ + 1
,∀t ≥ t̃.

(76)

Through replacing t with T , we have E[F (wT+1)−F (w∗)]→0
as T→∞. This completes the proof.

APPENDIX F
PROOF OF THEOREM 2

For FL, the BS only aggregates local gradients, which
implies ĝt = ĝf

t . The global gradient error reduces to
eFL = ẽ1+ ẽ3, where ẽ1 = ∇F (wt)−gf

t and ẽ3 = gf
t − ĝf

t .
Taking the expectation on both sides of (59), we have

E[F (wt+1)] ≤E[F (wt)]−
1

2L
E[∥∇F (wt)∥2]

+
4

L
E[∥ẽ1∥2] +

1

L
E[∥ẽ3∥2]. (77)

By separately substituting Nf with Nf + Nc and Nf,k with
Nf,k +Nc,k into Lemma 2, we have E[∥ẽ1∥2] and E[∥ẽ3∥2]
are bounded, respectively, by

E[∥ẽ1∥2] ≤
N − (Nf +Nc)

Nf +Nc
(ξ1 + ξ2∥∇F (wt)∥2), (78)

E[∥ẽ3∥2] ≤
4KG2

(Nf +Nc)2

K∑
k=1

(Nf,k +Nc,k)
2
∣∣1−pt,f,kbH

t ht,k

∣∣2
+G2σ2∥bt∥2. (79)

After plugging (78) and (79) into (77) while subtracting
F (w∗) on both sides, we have

E [F (wt+1)− F (w∗)] ≤ρ̃1E [F (wt)− F (w∗)] + ρ̃2

+ φ̃t ({pf,k},b) . (80)

Recursively applying (80) for t times and letting t = T , (29)
can be obtained.

For CL, the BS calculates the global gradient based on
the randomly selected Nf + Nc data samples in Dc,t, i.e.,
ĝt =

1
Nf+Nc

∑
n∈Dc,t

gt,n. The global gradient error becomes
eCL = ∇F (wt)−ĝt. Similarly, taking the expectation on both
sides of (59), we have

E[F (wt+1)] ≤E[F (wt)]−
1

2L
E[∥∇F (wt)∥2]

+
1

2L
E[∥eCL∥2]. (81)

By substituting Nc in (22) with Nf +Nc, we have ∥eCL∥2 ≤
N−(Nf+Nc)

Nf+Nc
(ξ1 + ξ2∥∇F (wt)∥2). As a result, it holds that

E [F (wt+1)− F (w∗)] ≤ ρ̂1E [F (wt)− F (w∗)] + ρ̂2. (82)

Recursively applying (82) for t times and setting t = T , (30)
can be obtained.

To reveal the relation between SemiFL, FL, and CL, one can
find ρ̃1 ≥ ρ1, ρ̃2 ≥ ρ2, and φ̃t ({pf,k},b) ≥ φt ({pf,k},b),
since N ≫ Nf + Nc and (Nf,k+Nc,k)

2

(Nf+Nc)2
≥ N2

f,k

(Nf+Nc)2
. Hence,

ψSemiFL
T ({pf,k},b) ≤ ψFL

T ({pf,k},b) holds. By separately
rewriting ρ1 and ρ2 as

ρ1 = ρ̂1 +
3µξ2(Nf +Nc)[N − (Nf +Nc)] + 8µξ2NfNc

L(Nc +Nf )2
,

(83)

ρ2 = ρ̂2 +
ξ1(Nf +Nc)[N − (Nf +Nc)] + 4ξ1NcNf

L(Nc +Nf )2
,

(84)

we find that ρ1 ≥ ρ̂1 and ρ2 ≥ ρ̂2. Since φt({pf,k},b) ≥ 0,
we have ψCL

T ({pf,k},b) ≤ ψSemiFL
T ({pf,k},b). This com-

pletes the proof.

APPENDIX G
PROOF OF LEMMA 3

When the BS has a single antenna, the aggregation beam-
former b degrades to a scalar b ∈ C. The Lagrange function
of problem (42) is given by

L(b, λ) =bH(ω0 + λω1)b− 2Re{bH(ĥ0 + λĥ1)}
+ λ(ι− ϵ), (85)

where λ ≥ 0 is the Lagrange multiplier. Then, KKT conditions
are given by

∂L(b, λ)
∂b

= 0, (86a)

λ ≥ 0, (86b)
λ(bHω1b− 2Re{bHĥ1}+ ι− ϵ) = 0. (86c)

By solving (86a), we obtain

b =
1

ω0+λω1

∑K

k=1

[
4KN2

f,k

(Nf +Nc)2
+
N2

f,k

N2
f

λ

]
pf,khk. (87)

We plug (87) into equation bHω1b− 2Re{bHĥ1}+ ι− ϵ = 0
and solve it to obtain λ as

λ = −ω0

ω1
+

|ω0ĥ1 − ω1ĥ0|

ω1

√
|ĥ1|2 − ω1(ι− ϵ)

. (88)

Plugging (88) into (87), we reach (45). This completes the
proof.

APPENDIX H
PROOF OF LEMMA 4

The Lagrange function of problem (56) is given by

L(fk, νk, λ1, λ2) = λ1g(fk|f (n)k ) + (1− λ1 + λ2)νk, (89)

where λ1 and λ2 are Lagrange multipliers. Then, KKT con-
ditions are given by

∂L(fk, νk, λ1, λ2)
∂fk

= 0, (90a)

∂L(fk, νk, λ1, λ2)
∂νk

= 0, (90b)

λ1 ≥ 0, λ2 ≥ 0, (90c)

λ1(g(fk|f (n)k )− νk) = 0, (90d)
λ2νk = 0. (90e)
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By solving (90a) and (90b), we have

fk =
1

λ1
M−1

k (Mk −A2,k)f
(n)
k , (91)

λ2 − λ1 + 1 = 0. (92)

If λ2 > 0, we have νk = 0 based on (90e). However,
according to (90d), one can prove that there is no solution
for λ1 by solving equation g(fk|f (n)k ) = 0 when νk = 0. As
such, we have λ2 = 0. In terms of (91), λ1 can not be 0,
which implies λ1 > 0. By plugging λ2 = 0 into (92), we
have λ1 = 1 and reach (57). Considering the complementary
slackness condition (90d), we have g(fk|f (n)k )−νk = 0. By
plugging (57) into g(fk|f (n)k ), we reach (58). This completes
the proof.
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federated learning: An integrated framework for pervasive intelligence
in 6G networks,” in Proc. IEEE INFOCOM Workshops, New York, NY,
USA, May 2022.
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Poor, “Blind federated edge learning,” IEEE Trans. Wireless Commun.,
vol. 20, no. 8, pp. 5129–5143, Aug. 2021.

[30] X. Fan, Y. Wang, Y. Huo, and Z. Tian, “Joint optimization of com-
munications and federated learning over the air,” IEEE Trans. Wireless
Commun., vol. 21, no. 6, pp. 4434–4449, Jun. 2021.

[31] W. Ni, Y. Liu, Y. C. Eldar, Z. Yang, and H. Tian, “STAR-RIS integrated
non-orthogonal multiple access and over-the-air federated learning:
Framework, analysis, and optimization,” IEEE Internet Things J., vol. 9,
no. 18, pp. 17 136–17 156, Sep. 2022.

[32] M. P. Friedlander and M. Schmidt, “Hybrid deterministic-stochastic
methods for data fitting,” SIAM J. Sci. Comput., vol. 34, no. 3, pp.
A1380–A1405, Jan. 2012.

[33] H. Guo, A. Liu, and V. K. N. Lau, “Analog gradient aggregation
for federated learning over wireless networks: Customized design and
convergence analysis,” IEEE Internet Things J., vol. 8, no. 1, pp. 197–
210, Jan. 2021.

[34] H. Lu, X. Jiang, and C. W. Chen, “Distortion-aware cross-layer power
allocation for video transmission over multi-user NOMA systems,” IEEE
Trans. Wireless Commun., vol. 20, no. 2, pp. 1076–1092, Feb. 2021.

[35] M. Mazzotti, S. Moretti, and M. Chiani, “Multiuser resource allocation
with adaptive modulation and LDPC coding for heterogeneous traffic in
OFDMA downlink,” IEEE Trans. Commun., vol. 60, no. 10, pp. 2915–
2925, Oct. 2012.

[36] S. Huang, P. Zhang, Y. Mao, L. Lian, Y. Wu et al., “Wireless federated
learning over MIMO networks: Joint device scheduling and beamform-
ing design,” in Proc. IEEE ICC Workshops, Seoul, Korea, Republic of,
May 2022.

[37] M. Grant and S. Boyd, “CVX: Matlab software for disciplined
convex programming, version 2.1,” Mar. 2014. [Online]. Available:
http://cvxr.com/cvx

http://cvxr.com/cvx


18

[38] T. Qin, W. Liu, B. Vucetic, and Y. Li, “Over-the-air computation via
broadband channels,” IEEE Wireless Commun. Lett., vol. 10, no. 10, pp.
2150–2154, Oct. 2021.

[39] F. Fang, Y. Xu, Z. Ding, C. Shen, M. Peng et al., “Optimal resource
allocation for delay minimization in NOMA-MEC networks,” IEEE
Trans. Commun., vol. 68, no. 12, pp. 7867–7881, Dec. 2020.

[40] Y. Liu, J. Zhao, M. Li, and Q. Wu, “Intelligent reflecting surface
aided MISO uplink communication network: Feasibility and power
minimization for perfect and imperfect CSI,” IEEE Trans. Commun.,
vol. 69, no. 3, pp. 1975–1989, Mar. 2021.

[41] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algo-
rithms in signal processing, communications, and machine learning,”
IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794–816, Feb. 2017.

[42] S. Boyd and L. Vandenberghe, Convex Optimization. UK: Cambridge
University Press, 2004.

[43] W. Ni, X. Liu, Y. Liu, H. Tian, and Y. Chen, “Resource allocation for
multi-cell IRS-aided NOMA networks,” IEEE Trans. Wireless Commun.,
vol. 20, no. 7, pp. 4253–4268, Jul. 2021.

[44] L. Cui, X. Su, and Y. Zhou, “A fast blockchain-based federated learn-
ing framework with compressed communications,” IEEE J. Sel. Areas
Commun., vol. 40, no. 12, pp. 3358–3372, Dec. 2022.

[45] M. M. Mansour, “Low-complexity soft-output MIMO detectors based on
optimal channel puncturing,” IEEE Trans. Wireless Commun., vol. 20,
no. 4, pp. 2729–2745, Apr. 2021.

[46] L. Chen, X. Qin, and G. Wei, “A uniform-forcing transceiver design
for over-the-air function computation,” IEEE Wireless Commun. Lett.,
vol. 7, no. 6, pp. 942–945, Dec. 2018.

[47] W. Ni, Y. Liu, Z. Yang, H. Tian, and X. Shen, “Federated learning in
multi-RIS aided systems,” IEEE Internet Things J., vol. 9, no. 12, pp.
9608–9624, Jun. 2022.

[48] Z. Luo, W. Ma, A. M. So, Y. Ye, and S. Zhang, “Semidefinite relaxation
of quadratic optimization problems,” IEEE Signal Process Mag., vol. 27,
no. 3, pp. 20–34, May 2010.

[49] Z. Wei, D. W. K. Ng, and J. Yuan, “Joint pilot and payload power control
for uplink MIMO-NOMA with MRC-SIC receivers,” IEEE Commun.
Lett., vol. 22, no. 4, pp. 692–695, Apr. 2018.

Jingheng Zheng received the B.E. degree in com-
munication engineering from Beijing University of
Posts and Telecommunications, Beijing, China, in
2020, where he is currently pursuing the Ph.D.
degree. From September 2022 to September 2023,
he was a Visiting Student with the Pillar of Infor-
mation Systems Technology and Design, Singapore
University of Technology and Design, Singapore,
under the supervision of Dr. Wenchao Jiang. He was
a recipient of the Samsung Scholarship in 2022. His
research interests include federated learning, non-

orthogonal multiple access, over-the-air computation, and wireless resource
management.

Wanli Ni (Graduate Student Member, IEEE) re-
ceived the B.Eng. degree in communication engi-
neering from the Beijing University of Posts and
Telecommunications, China, in 2018, where he is
currently pursuing the Ph.D. degree. From Septem-
ber 2020 to June 2022, he was a Visiting Student
(remote) with the School of Electronic Engineering
and Computer Science, Queen Mary University of
London, U.K., under the supervision of Dr. Yuanwei
Liu. From July 2022 to September 2022, he was a
Visiting Student with the Department of Electrical

and Electronic Engineering, Southern University of Science and Technology,
Shenzhen, China, under the supervision of Dr. Changsheng You. From
December 2022 to May 2023, he was a Visiting Student with the School
of Computer Science and Engineering, Nanyang Technological University,
Singapore, under the supervision of Prof. Dusit Niyato. His research interests
include federated learning (FL), reconfigurable intelligent surface (RIS), non-
orthogonal multiple access (NOMA), over-the-air computation (AirComp),
performance analysis, and optimization of wireless networks.

He was a recipient of the Samsung Scholarship in 2019 and the National
Scholarship in 2021 and 2022. He was a co-author of the Best Paper Award
in the IEEE SAGC 2020. He was a receipt of the IEEE ComSoc Student
Travel Grant from the multiple international conferences including IEEE
GLOBECOM, INFOCOM, and ICC. He was selected as an Exemplary
Reviewer of the IEEE WIRELESS COMMUNICATIONS LETTERS in 2021,
the IEEE COMMUNICATIONS LETTERS and IEEE TRANSACTIONS ON
COMMUNICATIONS in 2022.

Hui Tian (Senior Member, IEEE) received the M.S.
and Ph.D. degrees from Beijing University of Posts
and Telecommunications (BUPT), China, in 1992
and 2003, respectively. Currently, she is a professor
with the School of Information and Communication
Engineering at BUPT. Her current research interests
mainly include radio resource management in 5G/6G
networks, mobile edge computing, cooperative com-
munication, mobile social network, and Internet of
Things.
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