1,229 research outputs found

    Combined Endocyclophotocoagulation and Phacoemulsification in Patients with Glaucoma of African Descent

    Get PDF
    The aim of this study was to evaluate the outcomes of combined endocyclophotocoagulation (ECP) and phacoemulsification regarding vision, refraction, intraocular pressure (IOP), medication dependence, and complications in patients of African descent. A retrospective chart review was performed including all cases of ECP combined with phacoemulsification from October 2015 to March 2017. Exclusion criteria consisted of patients who were not of African descent and patients with <1 month follow-up. IOP was the primary outcome. Thirty-two eyes of 29 patients were included in the study. Mean ± standard deviation (SD) of IOP decreased from 17.30 ± 6.30 mmHg preoperatively to 15.88 ± 4.23 mmHg at the last postoperative visit (P = 0.301). In 2 of eight patients who did not demonstrate a difference in pre- and postoperative IOP changes, all IOP lowering medications were stopped. The mean ± SD of follow-up was 5.05 ± 4.08 months with a range of 1 to 18 months. The mean ± SD number of medications used for each patient for IOP control decreased from 2.59 ± 1.01 preoperatively to 1.97 ±1.38 (P = 0.045). Average visual acuity improved from 20/50 preoperatively to 20/25 (P = 0.002). Postoperative complication rate was low. ECP combined with phacoemulsification was effective to decrease IOP lowering medication dependence in patients of African descent. We found that combined ECP and phacoemulsification can lead to a significantly decreased dependence on IOP lowering drops, with some patients demonstrating complete independence from drops following surgery. Although there was not a significant decrease in IOP postoperatively when analyzed collectively, larger studies might to find such an association. Combined ECP and phacoemulsification has been shown to be a safe combination in patients with refractive glaucoma and may be considered if a patient desire less dependence on IOP lowering drops once other first-line methods have failed, or as a bridge between conservative and more definitive surgical treatment. Epub: October 1, 201

    Mechanisms of Lymphatic Regeneration after Tissue Transfer

    Get PDF
    Lymphedema is the chronic swelling of an extremity that occurs commonly after lymph node resection for cancer treatment. Recent studies have demonstrated that transfer of healthy tissues can be used as a means of bypassing damaged lymphatics and ameliorating lymphedema. The purpose of these studies was to investigate the mechanisms that regulate lymphatic regeneration after tissue transfer.Nude mice (recipients) underwent 2-mm tail skin excisions that were either left open or repaired with full-thickness skin grafts harvested from donor transgenic mice that expressed green fluorescent protein in all tissues or from LYVE-1 knockout mice. Lymphatic regeneration, expression of VEGF-C, macrophage infiltration, and potential for skin grafting to bypass damaged lymphatics were assessed.Skin grafts healed rapidly and restored lymphatic flow. Lymphatic regeneration occurred beginning at the peripheral edges of the graft, primarily from ingrowth of new lymphatic vessels originating from the recipient mouse. In addition, donor lymphatic vessels appeared to spontaneously re-anastomose with recipient vessels. Patterns of VEGF-C expression and macrophage infiltration were temporally and spatially associated with lymphatic regeneration. When compared to mice treated with excision only, there was a 4-fold decrease in tail volumes, 2.5-fold increase in lymphatic transport by lymphoscintigraphy, 40% decrease in dermal thickness, and 54% decrease in scar index in skin-grafted animals, indicating that tissue transfer could bypass damaged lymphatics and promote rapid lymphatic regeneration.Our studies suggest that lymphatic regeneration after tissue transfer occurs by ingrowth of lymphatic vessels and spontaneous re-connection of existing lymphatics. This process is temporally and spatially associated with VEGF-C expression and macrophage infiltration. Finally, tissue transfer can be used to bypass damaged lymphatics and promote rapid lymphatic regeneration

    Nuclear classical dynamics of H2_2 in intense laser field

    Full text link
    In the first part of this paper, the different distinguishable pathways and regions of the single and sequential double ionization are determined and discussed. It is shown that there are two distinguishable pathways for the single ionization and four distinct pathways for the sequential double ionization. It is also shown that there are two and three different regions of space which are related to the single and double ionization respectively. In the second part of the paper, the time dependent Schr\"{o}dinger and Newton equations are solved simultaneously for the electrons and the nuclei of H2_2 respectively. The electrons and nuclei dynamics are separated on the base of the adiabatic approximation. The soft-core potential is used to model the electrostatic interaction between the electrons and the nuclei. A variety of wavelengths (390 nm, 532 nm and 780 nm) and intensities (5×10145\times10^{14} Wcm2Wcm^{-2} and 5×1015 5\times10^{15} Wcm2Wcm^{-2}) of the ultrashort intense laser pulses with a sinus second order envelope function are used. The behaviour of the time dependent classical nuclear dynamics in the absence and present of the laser field are investigated and compared. In the absence of the laser field, there are three distinct sections for the nuclear dynamics on the electronic ground state energy curve. The bond hardening phenomenon does not appear in this classical nuclear dynamics simulation.Comment: 16 pages, 7 figure

    Androgen-induced cerebral venous sinus thrombosis in a young body builder: case report

    Get PDF
    BACKGROUND: Cerebral venous sinus thrombosis is an infrequent disease with a variety of causes. Pregnancy, puerperium, contraceptive pills and intracranial infections are the most common causes. The patient may present with headache, focal neurological deficits and seizures. The clinical outcome is highly variable and treatment with heparin is advised. CASE PRESENTATION: The patient is a 22 year old male who presented with headache, repeated vomiting and papilledema. He was a bodybuilder doing exercise since 5 years ago, who had used nandrolone decaonoate 25 milligrams intramuscularly during the previous 5 months. Brain MRI and MRV showed superior sagital and transverse sinus thrombosis and extensive investigations did not reveal any known cause. CONCLUSIONS: We suggested that androgen was the predisposing factor in our patient. Androgens may increase coagulation factors or platelet activity and cause arterial or venous thrombosis. As athletes may hide using androgens it should be considered as a predisposing factor for thrombotic events in such patients

    Science with the space-based interferometer LISA. V Extreme mass-ratio inspirals

    Get PDF
    The space-based Laser Interferometer Space Antenna (LISA) will be able to observe the gravitational-wave signals from systems comprised of a massive black hole and a stellar-mass compact object. These systems are known as extreme-mass-ratio inspirals (EMRIs) and are expected to complete 104\sim 10^4-10510^5 cycles in band, thus allowing exquisite measurements of their parameters. In this work, we attempt to quantify the astrophysical uncertainties affecting the predictions for the number of EMRIs detectable by LISA, and find that competing astrophysical assumptions produce a variance of about three orders of magnitude in the expected intrinsic EMRI rate. However, we find that irrespective of the astrophysical model, at least a few EMRIs per year should be detectable by the LISA mission, with up to a few thousands per year under the most optimistic astrophysical assumptions. We also investigate the precision with which LISA will be able to extract the parameters of these sources. We find that typical fractional statistical errors with which the intrinsic parameters (redshifted masses, massive black hole spin and orbital eccentricity) can be recovered are 106\sim 10^{-6}-10410^{-4}. Luminosity distance (which is required to infer true masses) is inferred to about 10%10\% precision and sky position is localized to a few square degrees, while tests of the multipolar structure of the Kerr metric can be performed to percent-level precision or better.Comment: 13 figures, 22 pages; updated to match published versio

    Pulsar Timing and its Application for Navigation and Gravitational Wave Detection

    Full text link
    Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to "construct" a galactic-sized gravitational wave detector for low-frequency (f_GW ~1E-9 - 1E-7 Hz) gravitational waves. We present the current status and provide an outlook for the future.Comment: 30 pages, 9 figures. To appear in Vol 63: High Performance Clocks, Springer Space Science Review

    The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth

    Full text link
    One of the most interesting sources of gravitational waves (GWs) for LISA is the inspiral of compact objects on to a massive black hole (MBH), commonly referred to as an "extreme-mass ratio inspiral" (EMRI). The small object, typically a stellar black hole (bh), emits significant amounts of GW along each orbit in the detector bandwidth. The slowly, adiabatic inspiral of these sources will allow us to map space-time around MBHs in detail, as well as to test our current conception of gravitation in the strong regime. The event rate of this kind of source has been addressed many times in the literature and the numbers reported fluctuate by orders of magnitude. On the other hand, recent observations of the Galactic center revealed a dearth of giant stars inside the inner parsec relative to the numbers theoretically expected for a fully relaxed stellar cusp. The possibility of unrelaxed nuclei (or, equivalently, with no or only a very shallow cusp) adds substantial uncertainty to the estimates. Having this timely question in mind, we run a significant number of direct-summation NN-body simulations with up to half a million particles to calibrate a much faster orbit-averaged Fokker-Planck code. We then investigate the regime of strong mass segregation (SMS) for models with two different stellar mass components. We show that, under quite generic initial conditions, the time required for the growth of a relaxed, mass segregated stellar cusp is shorter than a Hubble time for MBHs with M5×106MM_\bullet \lesssim 5 \times 10^6 M_\odot (i.e. nuclei in the range of LISA). SMS has a significant impact boosting the EMRI rates by a factor of 10\sim 10 for our fiducial models of Milky Way type galactic nuclei.Comment: Accepted by CQG, minor changes, a bit expande

    Gene Function Classification Using Bayesian Models with Hierarchy-Based Priors

    Get PDF
    We investigate the application of hierarchical classification schemes to the annotation of gene function based on several characteristics of protein sequences including phylogenic descriptors, sequence based attributes, and predicted secondary structure. We discuss three Bayesian models and compare their performance in terms of predictive accuracy. These models are the ordinary multinomial logit (MNL) model, a hierarchical model based on a set of nested MNL models, and a MNL model with a prior that introduces correlations between the parameters for classes that are nearby in the hierarchy. We also provide a new scheme for combining different sources of information. We use these models to predict the functional class of Open Reading Frames (ORFs) from the E. coli genome. The results from all three models show substantial improvement over previous methods, which were based on the C5 algorithm. The MNL model using a prior based on the hierarchy outperforms both the non-hierarchical MNL model and the nested MNL model. In contrast to previous attempts at combining these sources of information, our approach results in a higher accuracy rate when compared to models that use each data source alone. Together, these results show that gene function can be predicted with higher accuracy than previously achieved, using Bayesian models that incorporate suitable prior information

    Advanced localization of massive black hole coalescences with LISA

    Full text link
    The coalescence of massive black holes is one of the primary sources of gravitational waves (GWs) for LISA. Measurements of the GWs can localize the source on the sky to an ellipse with a major axis of a few tens of arcminutes to a few degrees, depending on source redshift, and a minor axis which is 2--4 times smaller. The distance (and thus an approximate redshift) can be determined to better than a per cent for the closest sources we consider, although weak lensing degrades this performance. It will be of great interest to search this three-dimensional `pixel' for an electromagnetic counterpart to the GW event. The presence of a counterpart allows unique studies which combine electromagnetic and GW information, especially if the counterpart is found prior to final merger of the holes. To understand the feasibility of early counterpart detection, we calculate the evolution of the GW pixel with time. We find that the greatest improvement in pixel size occurs in the final day before merger, when spin precession effects are maximal. The source can be localized to within 10 square degrees as early as a month before merger at z=1z = 1; for higher redshifts, this accuracy is only possible in the last few days.Comment: 11 pages, 4 figures, version published in Classical and Quantum Gravity (special issue for proceedings of 7th International LISA Symposium
    corecore