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10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France

(Dated: April 12, 2018)

The space-based Laser Interferometer Space Antenna (LISA) will be able to observe the
gravitational-wave signals from systems comprised of a massive black hole and a stellar-mass com-
pact object. These systems are known as extreme-mass-ratio inspirals (EMRIs) and are expected to
complete ∼ 104–105 cycles in band, thus allowing exquisite measurements of their parameters. In
this work, we attempt to quantify the astrophysical uncertainties affecting the predictions for the
number of EMRIs detectable by LISA, and find that competing astrophysical assumptions produce
a variance of about three orders of magnitude in the expected intrinsic EMRI rate. However, we
find that irrespective of the astrophysical model, at least a few EMRIs per year should be detectable
by the LISA mission, with up to a few thousands per year under the most optimistic astrophysical
assumptions. We also investigate the precision with which LISA will be able to extract the pa-
rameters of these sources. We find that typical fractional statistical errors with which the intrinsic
parameters (redshifted masses, massive black hole spin and orbital eccentricity) can be recovered
are ∼ 10−6–10−4. Luminosity distance (which is required to infer true masses) is inferred to about
10% precision and sky position is localized to a few square degrees, while tests of the multipolar
structure of the Kerr metric can be performed to percent-level precision or better.

I. INTRODUCTION

Gravitational waves (GWs) provide a means of gath-
ering precious information otherwise beyond the reach
of traditional electromagnetic astronomy. In particular,
GWs may illuminate our understanding of the properties
of black holes (BHs). The terrestrial Advanced LIGO [1]
has recently observed GW signals from coalescing stellar-
mass binary BHs, with two clear detections [2, 3] and a
probable third candidate [4, 5]. These observations al-
lowed estimation of the source parameters with high ac-
curacy [5–7], giving new insight into their astrophysical
formation [5, 8] and allowing tests of general relativity
(GR) [5, 9, 10]. Many more stellar-mass BH binaries
are expected to be detected by LIGO (and by other ter-
restrial detectors such as Advanced Virgo [11] and KA-
GRA [12]) in the next few years [5, 13].

In addition to stellar-mass BHs, there is believed to
be a population of massive BHs (MBHs), with masses
in the range 105–109M�, each lurking at the center of
a galaxy [14–18]. Correlations between the mass of the
MBH and other characteristics of the surrounding stars,

such as the velocity dispersion σ of the spheroidal com-
ponent of the host galaxy (see, e.g., [19]) suggest a link
between evolution of the MBH and its host galaxy [20–
22].

Surrounding MBHs out to distances of a few parsecs,
are nuclear star clusters of millions of stars [23]. In these
innermost galactic regions, the density of stars easily ex-
ceeds 106M� pc−3, and relative stellar velocities range
between ∼ 100–1000 km s−1. Here, mutual gravitational
deflections between stars play a crucial role in determin-
ing dynamics [24], and their tidal disruption may con-
tribute to increasing the mass of the central MBH [25–
28]. Unlike stars, compact objects (COs; including
stellar-mass BHs, neutron stars and white dwarfs) can
avoid tidal disruption and approach the central MBH,
radiating a significant amount of energy in GWs at low
frequencies.

One of the main experimental challenges for ground-
based detectors is seismic noise, which limits their sen-
sitivity at frequencies <∼ 10 Hz, making them insensitive
to GWs from MBH systems. However, space-borne inter-
ferometric GW detectors, such as the Laser Interferome-
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ter Space Antenna (LISA) [29], are free from the seismic
noise. The technology behind LISA, an ESA-led mission
expected to be launched by 2034, has been recently tested
by the LISA Pathfinder experiment with outstanding re-
sults [30]. Previous work has investigated the scientific
potential of LISA-like detectors for (i) MBH mergers and
astrophysics [31]; (ii) stochastic backgrounds [32, 33]; (iii)
cosmography [34]; (iv) tests of general relativity [35, 36];
and (v) ringdown tests of the nature of BHs [36, 37].
LISA will also usher in the era of multiband GW as-
tronomy, with stellar-mass binary BHs being detectable
by LISA years to days before they reach the sensitiv-
ity window of ground-based detectors [38]. This would
provide information on the formation mechanism of BH
binaries [39–41], improve the precision of parameter es-
timation (including sky location) [42], and yield better
constraints on putative deviations from GR [35]. In
this paper we will focus on the physics and astrophysics
of extreme mass-ratio inspirals (EMRIs) [43], i.e. sys-
tems comprised of stellar-mass BHs or other comparable
mass COs orbiting around a MBH with mass M ∼ 104–
107M�.

As a consequence of their extreme mass ratio these
systems inspiral slowly, completing ∼ 104–105 cycles
in LISA’s sensitive frequency range [44, 45]. Therefore
EMRIs are ideal signals to construct detailed maps of
the background spacetime of MBHs [46–50], precisely
estimate source parameters [51–53], perform tests of
GR [50, 54], and possibly detect the presence of gas
around the central MBH [55–60]. Measuring the prop-
erties of a population of EMRI signals could additionally
give us information on the mass distribution of MBHs [61]
and their host stellar environments [43].

We examine in detail the scientific potential of EMRI
observations with LISA, focusing on event rates and on
parameter-estimation precision. There have been pre-
vious studies computing EMRI rates [62–64], but the
astrophysical model employed in those calculations was
a combination of simple power laws, and no attempt
was made to quantify the uncertainties in that model.
EMRI parameter-estimation studies have also been car-
ried out [51, 52], but only for a small sample of represen-
tative cases and not for a full astrophysical population.
In this study we address both of these shortcomings. We
compute event rates for several different astrophysical
models that were selected to quantify the main obser-
vational uncertainties, and we compute estimates of the
parameter-estimation precisions for all the events in each
population. Our results are computed for the first time
considering a 2.5 Gm LISA detector with six laser links,
which was proposed as the new mission baseline in the
response to the ESA call in January 2017 [29].

The plan of the paper is as follows. We begin in Sec-
tion II by discussing the assumed design of the LISA
detector. In Section III we describe our astrophysical
EMRI model and the related uncertainties. Section IV
describes our EMRI waveform models and the parameter
estimation calculation. We summarize our main results

in Section V, and conclude by presenting possible direc-
tions for future research.

II. LISA SENSITIVITY

The LISA baseline went through several stages of re-
design in the past five years. Following the 2011 NASA
drop-out, the classic LISA design was initially descoped
to fit within the budget of an L-class ESA mission, lead-
ing to the New Gravitational-wave Observatory (NGO)
design [65]. This new baseline was eventually selected as
strawman mission in support of The Gravitational Uni-
verse [66], the science theme adopted by ESA for its L3
slot, scheduled for launch in 2034. Following the selec-
tion in 2014, a Gravitational Observatory Advisory Team
(GOAT) was appointed by ESA to consider a number of
feasible options and issue a recommendation for a new
design. The study considered a family of designs, featur-
ing different choices for the arm length L, laser power,
telescope diameter, mission duration and low-frequency
noise level (see [31] for details).

Following the GOAT recommendation, the LISA Con-
sortium answered the ESA call for missions by proposing
the baseline outlined in [29]. The detector features a
constellation of three satellites separated by L = 2.5 Gm
and connected by six laser links. The output power of
each laser is 2 W and their light is collected by 30 cm
telescopes. The sky-averaged detector sensitivity can be
written in analytic form as

Sn(f) =
20

3

4Sacc
n (f) + 2Sloc

n + Ssn
n + Somn

n

L2

×
[

1 +

(
2Lf

0.41c

)2
]
, (1)

where L is the arm length, and the noise contributions
Sacc
n (f), Sloc

n , Ssn
n and Somn

n are due to low-frequency
acceleration, local interferometer noise, shot noise and
other measurement noise, respectively. The acceleration
noise has been fitted to the level successfully demon-
strated by the LISA Pathfinder [30] as

Sacc
n (f) =

{
9× 10−30 + 3.24× 10−28

[(
3× 10−5 Hz

f

)10

+

(
10−4 Hz

f

)2
]}

1

(2πf)4
m2 Hz

−1
, (2)

whereas other contributions are set to

Sloc
n = 2.89× 10−24 m2 Hz−1,

Ssn
n = 7.92× 10−23 m2 Hz−1,

Somn
n = 4.00× 10−24 m2 Hz−1.

(3)

Besides the instrumental noise of Eq. (1), we also in-
clude a galactic confusion noise component, modeled by
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the fit

Sgal = Agal

(
f

1 Hz

)−7/3

exp

[
−
(
f

s1

)α]
×1

2

[
1 + tanh

(
−f − f0

s2

)]
. (4)

The overall amplitude of the background Agal = 3.266×
10−44 Hz−1 depends on the astrophysical model for the
population of white dwarf binaries in the Galaxy. Here
we have used the same model as in [29]. The power law
f−7/3 is what we expect from a population of almost
monochromatic binaries. The exponential factor comes
from removal of the loud signals standing above the con-
fusion background, while the last term takes into account
that all Galactic binaries can be resolved and removed
above some frequency f0. For the assumed two-year ob-
servation period, the fitting parameters appearing in the
above expression for Sgal have the values: α = 1.183,
s1 = 1.426 mHz, f0 = 2.412 mHz, s2 = 4.835 mHz.

The LISA design is most sensitive at millihertz fre-
quencies, making it well-purposed for observing EMRIs.

III. ASTROPHYSICAL EMRI MODEL

The expected EMRI rate depends on several astrophys-
ical ingredients:

• The MBH population in the accessible LISA mass
range, M ∈

[
104, 107

]
M�, the redshift evolution of

their mass function, and their spin distribution;

• The fraction of MBHs hosted in dense stellar cusps,
which are the nurseries for EMRI formation;

• The EMRI rate per individual MBH, and the
mass and eccentricity distribution of the inspi-
ralling COs.

In the following subsections we consider these ingredi-
ents in turn, presenting the astrophysically motivated
prescriptions used in this work, before combining them
in Section III D.

A. MBH population

We consider here two population models that are in-
tended to bracket current uncertainties in the MBH mass
function at the low mass end (cf. Figure 1). The first one
is Model popIII, as investigated in Klein et al. [31]. This
is a self-consistent model for MBH formation and cosmic
evolution developed in [67–70], and assumes light MBH
seeds from population III (popIII) stars [71], while ac-
counting for the delays between MBH and galaxy merg-
ers. The model successfully reproduces several galaxy
and MBH mass function properties, and it is consistent

FIG. 1. MBH density mass function dn/d log10M for the
self-consistent model popIII at redshift 0 (solid), 1 (long
dashed), 2 (short dashed) and 3 (dotted). The approxima-
tion provided by Eq. (5) is shown as a thin straight black
line. Also shown in brown is the redshift-independent pes-
simistic mass function as given by Eq. (6). The shaded area
represent constraints from Shankar et al. [72] (light orange)
and Shankar [73] (green).

with observational constraints on the MBH mass func-
tion [72, 73]. The predicted MBH mass function in the
relevant range can be approximated as

dn

d logM
= 0.005

(
M

3× 106M�

)−0.3

Mpc−3, (5)

almost independent of redshift, as shown in Figure 1. We
label this mass function “Barausse12”.

Following Gair et al. [61], we also consider a more con-
servative model with a redshift-independent mass func-
tion of the form

dn

d logM
= 0.002

(
M

3× 106M�

)0.3

Mpc−3. (6)

In this case, the MBH mass function increases with mass
at the low-mass end, and it is therefore less favorable
for EMRI events falling in the LISA band. This is a
purely phenomenological model, which does not come
from a self-consistent MBH evolutionary scenario, but
is still consistent with current observational constraints
on the MBH mass function. We label this mass function
“Gair10”.

The EMRI rate and expected signal also depend on the
spin parameter a of the central MBH. The popIII model
self-consistently follows the spin evolution of MBHs
through accretion and mergers. We find that most MBHs
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in the LISA range have near maximal spins. This is be-
cause, although MBH seeds start with a random spin dis-
tribution, they need to accrete enough mass to get into
the LISA band. At small masses, the MBHs always align
with the accreted material (the MBH angular momen-
tum is always smaller than the disk angular momentum
in our model [68]). The distribution starts to extend to
lower a for higher masses, when the MBH spin becomes
larger than the typical disk angular momentum [74]. As
a result, the MBHs do not always align with the accreting
material, and spindown is possible. However, this effect
becomes appreciable only at M ≈ 107M� [68, 74]. We
assume a maximum dimensionless MBH spin parameter
a = 0.998, with a median value around a = 0.98. Since
most MBHs have high spins in our default model, we la-
bel it “a98”. For the sake of comparison, we also consider
two alternative models; one with a flat spin distribution
0 < a < 1, labeled “aflat”, and one with nonspinning
MBHs, labeled “a0”.

B. Stellar cusps surrounding MBHs

A necessary condition for EMRI formation is the pres-
ence of a cusp-like distribution of stellar objects sur-
rounding the MBH. It has generally been assumed that
MBHs are immersed in a Bahcall–Wolf stellar cusp with
density profile ρ(r) ∝ r−7/4, which is the steady state so-
lution for a distribution of stars in the sphere of influence
of a massive object [75]. However galaxies merge, and so
do the MBHs they host. MBH binaries destroy stellar
cusps, carving a low density core [69, 70, 76] which is un-
suitable to the formation of EMRIs. One of the main ad-
vantages of using a semi-analytic MBH evolution model
is that we are able to track the MBH merger history im-
plementing a simple prescription that takes into account
in a self-consistent way cusp disruption following MBH
binary mergers.

1. Cusp erosion and regrowth.

To understand the impact of a merger we must esti-
mate the time tcusp taken for a cusp to reform.

We assume that each MBH binary with mass M =
M1 + M2 is embedded in an isothermal sphere, defined
by a density profile [78]

ρ(r) =
σ2

2πGr2
, (7)

where σ is the one-dimensional velocity dispersion. We
further assume that the MBH binary carves a core of
constant density and size rc in the center of the stellar
system. The mass deficit due to a flat core of size rc is
given by

Md =
4

3

σ2rc

G
. (8)

Thus, rc can be estimated once Md is known. The mass
deficit must equal the mass displaced by the MBH binary
on its way to coalescence, and is estimated as [69, 70]:

Md = 0.7Mq0.2 + 0.5M ln

(
rh

rGW

)
+ 5M

(
Vk

Vesc

)1.75

.

(9)
Here, q = M2/M1 ≤ 1 is the mass ratio of the MBH bi-
nary, rh is the binary hardening radius, rGW is the radius
at which GW emission dominates over stellar hardening,
Vk is the GW kick and Vesc ≈ 5σ is the typical escape ve-
locity from the stellar bulge [79]. To make use of Eq. (9),
we need an estimate of rh/rGW. Here rh is the hardening
radius, the separation at which the specific binding en-
ergy of the binary is equal to the average specific kinetic
energy of the surrounding stars [80, 81], given by

rh =
GM2

4σ2
, (10)

where M2 is the secondary’s mass (see e.g. [82]). The dis-
tance rGW represents the separation at which the MBH
binary evolution switches from being stellar hardening
dominated to be GW driven. It can therefore be com-
puted by finding where the three-body scattering harden-
ing rate (dr/dt)∗ becomes equal to the GW shrinking rate
(dr/dt)GW. The latter given by the standard quadrupole
formula [44], and the former can be written as [82](

dr

dt

)
∗

=
HGρ∗
σ

r2. (11)

Here H ≈ 15 is a dimensionless hardening rate and the
stellar density ρ∗ is evaluated at the influence radius of
the binary ri = GM/σ2 [83]. For the isothermal sphere
this gives

ρ∗ =
σ6

2πG3M2
. (12)

Combining everything together and assuming circular bi-
naries, one gets:

rh

rGW
≈ 0.178

c

σ

q4/5

(1 + q)3/5
. (13)

For a given MBH mass, if we know that there was a
merger with a given q, we can substitute Eq. (13) into
Eq. (9), to obtain the mass deficit, and use this in Eq. (8)
to solve for rc and obtain the extent of the core. Once rc

is known, the relaxation time for an isothermal sphere is
given by [78]

trelax =
5

ln Λ

( σ

10 km s−1

)( rc

1 pc

)2

Gyr, (14)

where ln Λ ≈ 10 is the Coulomb logarithm [78]. The cusp
regrowth time is then [84]

tcusp = 0.25trelax. (15)
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FIG. 2. Left panel: Cusp regrowth time tcusp as a function of the total MBH binary mass. Solid, long-dashed and short-dashed
curves are for q = 1, 0.1, 0.01 respectively. Red curves assume Vk = 0 whereas blue curves assume Vk/Vesc = 0.6. Right panel:
Mass deficit normalized to M as a function of binary mass ratio for M = 105M�(short dashed), M = 106M� (long dashed),
and M = 107M� (solid). Blue and green dots are mass deficits computed by Khan et al. [77].

This can be expressed in terms of M and q only if we
specify an M–σ relation to eliminate the σ dependence.
We use the best fit of Gültekin et al. [18] as our default
model:

M = 1.53× 106
( σ

70 km s−1

)4.24

M�. (16)

Combining Eq. (8)–(15), it is possible to approximate
tcusp ∝ M1.29 if we ignore the rh/rGW term in Eq. (9).
The dependence on the mass ratio is mild. Results for
tcusp are shown in the left panel of Figure 2. The red
curves are for Vk = 0, whereas the blue ones assume
Vk = 0.6Vesc. If we ignore the Vk contribution, we can fit
the cusp regrowth time as

tcusp ≈ 6

(
M

106M�

)1.19

q0.35 Gyr. (17)

The slightly weaker dependence on M than the initial
approximation is due to the rh/rGW term in Eq. (9).
Typical cusp regrowth timescales are a significant frac-
tion of the Hubble time for equal-mass binaries with total
mass 106M�, whereas they tend to become unimportant
for lower mass MBHs (generally less than 1 Gyr for a
105M� MBH).

Further core scouring following significant kicks will
make these timescales a factor of 2 longer. For typical
kick velocities of few hundred km s−1 we find that the
EMRI rate drops by a factor of ∼ 2 due to a combination
of MBH ejections from low mass halos and prolongation
of cusp regrowth timescales.

The adopted M–σ relation has a significant impact on
tcusp. We will therefore explore different prescriptions.
As mentioned above, our default model employs the M–
σ relation of Gültekin et al. [18] (labeled “Gultekin09”)
which gives tcusp ≈ 6 Gyr for a Milky Way-like MBH.
We also consider two alternatives; a pessimistic model
from Kormendy and Ho [19] (labeled “KormendyHo13”)
which gives tcusp ≈ 10 Gyr for a Milky Way-like MBH,
and an optimistic one [85] (labeled “GrahamScott13”)
which gives tcusp ≈ 2 Gyr for a Milky Way-like MBH.

For the sake of completeness, we also tried a model
based on Shankar et al. [86], which claims that the ob-
served M–σ relations are fundamentally biased and that
the intrinsic one has a lower normalization. We found
this to make little difference in practice for EMRI rates,
and do not present results based on this model.

To verify our simple model, we performed a series of
sanity checks. First, for a Milky Way-like MBH, Eq. (14)
implies trelax ≈ 1011 yr, which is consistent with Figure 1
of [87]. Moreover, Md given by Eq. (9) is consistent with
the results of full N -body simulations by Khan et al. [77],
as shown in the right panel of Figure 2. Here, each of the
red lines shows the mass predicted by our simple model
as a function of q (different line styles refer to different
MBH masses). The blue and green dots are mass deficits
computed by Khan et al. [77] at the end of their simula-
tions. The blue dots are mass deficits within 1.5ri, where
ri is the MBH binary influence radius, whereas the green
dots are mass deficits within 3ri. The mass deficit in
those simulation saturate between 2ri and 3ri. The cores
predicted by our simple model are ≈ 1.5ri. In the sim-



6

FIG. 3. Cusp regrowth effect for the popIII model. Left panel: The average differential number of mergers per unit redshift (i.e.
Eq. (18) integrated over q) dNm/dz experienced by each individual MBH of mass log10M = 4.5, 5, 5.5, 6, 6.5 from darker-thicker
to lighter-thinner. Center panel: The solid curves are the values of Nm(M, z) given by Eq. (20), and the dashed curves are
the corresponding probabilities of retaining a cusp given by Eq. (21). Right panel: The differential number of MBHs dN/dz
across the Universe in the three different mass bins that are potential EMRI hosts, either ignoring cusp disruption (solid lines)
or taking it into account (dashed lines).

ulations, however, the MBH binaries do not evolve all
the way through coalescence. Small q binaries, in par-
ticular, are stopped at an earlier stage of the evolution,
because the simulations are more time consuming. This
is the likely explanation of the steeper mass-ratio depen-
dence of the simulation results with respect to our mod-
els. Overall, the analytical mass deficits and the results
of the simulations agree to within a factor of 2.

2. Fraction of MBHs hosted in stellar cusps

To compute the fraction of MBHs that reside in cusps
versus those in cores, we need to convolve the MBH num-
ber density dn/dM (ignoring the spin dependence for the
moment) with the number density of mergers per unit
mass, mass ratio and redshift d3nm/dM dz dq, and the
cusp regrowth time tcusp(M, q) given by Eq. (17).

First, we assume that MBHs do not grow appreciably
in mass in the redshift range of interest (mostly z < 2
for LISA). Although this might well be a crude approx-
imation, it simplifies the model. From our semianalytic
MBH evolution model [67–70], we extract the distribu-
tion d3nm/dM dz dq, which is the differential number
density (per Mpc3) of mergers with mass ratio q under-
gone by a MBH of a given mass M at redshift z. The
quantity of interest is p0(M, z), the probability that a
MBH of mass M observed at redshift z had zero merg-
ers within its cusp regrowth time tcusp(M, q), given by
Eq. (17). We can define the quantity d2Nm/dz dq as

d2Nm

dz dq
(M, z, q) =

d3nm

dM dz dq

(
dn

dM

)−1

. (18)

This is the (mean) differential merger rate for an indi-
vidual MBH with mass M , i.e. the number of mergers a
MBH of a given mass M has undergone between redshift

z and z+dz and with mass ratio in the range q and q+dq.
The integral over q of Eq. (18) is represented in the left
panel of Figure 3; MBHs in the mass range of interest
for LISA generally experience between 0.1 and 1 merger
per unit redshift since z = 6. For each mass ratio, we
can then define a critical redshift zcusp(M, q) by solving
the implicit equation

tcusp(M, q) =

∫ zcusp(M, q)

z

dz′
dt

dz′
, (19)

where tcusp(M, q) is computed using Eq. (14) and
Eq. (15); if a MBH had suffered a merger between z and
zcusp(M, q), there would be no cusp. We can then com-
pute the mean number of mergers Nm(M, z) experienced
by an individual MBH of mass M observed at redshift z
in its cusp regrowth time as

Nm(M, z) =

∫
dq

∫ zcusp(M, q)

z

dz′
d2Nm

dz′ dq
(M, z, q). (20)

Assuming Poissonian statistics for the mergers, the prob-
ability that a MBH of mass M and redshift z did not
suffer a merger within its cusp regrowth time is1

p0(M, z) = exp [−Nm(M, z)] . (21)

We apply to each MBH a probability p0(M, z) of being
hosted in a stellar cusp, therefore being a suitable candi-
date for capturing an EMRI. Nm(M, z) is shown in the
central panel of Figure 3 for different MBH mass val-
ues. Despite the similar number of mergers across the

1 A Poissonian probability distribution is strictly speaking valid
only for rare, statistically independent events with a constant
rate per unit time. Nevertheless, one can easily show that this
equation holds also for events with non-constant rate.
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mass spectrum (left panel), low mass MBHs observed at
any z are extremely unlikely to have undergone a merger
within their short cusp regrowth timescale (see left panel
of Figure 2), and their probability of being hosted in a
stellar cusp is of order unity. The opposite is true for
massive MBHs which reside in galaxies with much longer
cusp regrowth timescales, and are likely to be hosted in
a low-density stellar core.

If the distribution of MBHs in the Universe is de-
scribed by a mass function (now including spin) of the
form d3N/(dM dz da), then we can construct an effective
MBH mass function for MBHs which could be potential
EMRI hosts:(

d3N

dM dz da

)
eff

=
d3N

dM dz da
p0(M, z). (22)

The right panel of Figure 3 shows this distribution in-
tegrated in spin and in different mass bins. It is clear
that the number of potential EMRI hosts is severely sup-
pressed only for M > 106M�.

C. EMRI rate per MBH and properties of the
stellar-mass BH

Finally, we need to specify the rate R0 at which COs
are captured by the central MBH, and define the prop-
erties of their orbits. The CO capture rate by MBHs
has been investigated extensively in the literature, taking
into account the effect of mass segregation [84], resonant
relaxation [88], relativistic corrections [89], central MBH
spins [90] and initial density profiles of the COs [91].

Our starting point is the intrinsic rate from Amaro-
Seoane and Preto [84], which accounts for the effect of
mass segregation:

R0 = 300

(
M

106M�

)−0.19

Gyr−1. (23)

This is is useful scaling relation; however, it has been
calibrated for Milky Way-like galaxies, and care must be
taken when extrapolating to other systems. In particular,
this rate was calculated assuming a steady-state stellar
environment surrounding the (growing) MBH which of-
ten cannot be achieved, especially for low-mass MBHs.
Moreover, Eq. (23) only describes the EMRI rate: it
does not include direct plunges. COs can be scattered
onto nearly radial orbits, directly plunging into the MBH
without emitting a significant GW signal. Although such
systems are lost as GW sources, they do contribute to the
growth of the MBH. The ratio of plunges to EMRI de-
pends mostly on the steepness of the density profile of
the CO population. Compared to EMRIs, plunges are
typically scattered into the MBH from much greater dis-
tances, so that a flatter density profile results in a larger
plunge-to-EMRI ratio. For example, Merritt [91] con-
sidered two different CO distributions around MBHs of
106M� and 4× 106M�, and found that while the EMRI

rate varied within a factor of 2, remaining consistent with
Eq. (23), the number of plunges per EMRI, Np, went
from being less than one for the steeper density profile,
to be more than 50 for the shallower one. A recent study
including a single population of compact objects found
more than 100 plunges per EMRI [92]. A proper compu-
tation of EMRI rates in an astrophysical context would
require N -body simulations starting from realistic initial
conditions, spanning a wide range of MBH masses and of
their surrounding stellar distribution properties. This is
a challenge that goes beyond the scope of this paper, and
in the following we develop a simple model to quantify
the impact of non-stationary CO feeding rates and direct
plunges on the astrophysical EMRI rates.

The parameter Np introduced earlier can vary between
zero and ∼ 102. Using Eq. (23), the total mass accretion
rate for the MBH is given by

Ṁ = mR0(1 +Np)

= 3000(1 +Np)

(
m

10M�

)(
M

106M�

)−0.19

M�Gyr−1,

(24)

where m is the characteristic mass of the CO. There
are two problems that arise from implementing Eq. (24),
which are exacerbated for low MBH masses. Consider for
example M = 105M�, m = 10M� and Np = 10. First,
according to this prescription, the MBH would double
its mass in only 2 Gyr, accreting more than five times its
initial mass in a Hubble time. Therefore, accreting COs
at the rate given by Eq. (23) would be inconsistent with
the existence of M = 105M� MBHs [93]. Second, such
a high accretion rate implies an astrophysically implau-
sible supply of COs to the MBH. Assuming a standard
Salpeter mass function [94, 95], only about 0.3% of stars
have a mass m∗ > 30M�. Assuming those end their life
as COs of m ≈ 10M� [96, 97], then we can estimate that
about 3% of the total stellar bulge is indeed composed
by COs. Within the sphere of influence of the MBH the
enclosed mass in stars is M∗ = 2M , and therefore the
mass in remnant BHs is about MCO = 0.06M . The CO
content within the sphere of influence of the MBH would
therefore be depleted in a time

td =
MCO

Ṁ
=

0.06M

mR0(1 +Np)

=
20

1 +Np
Gyr

(
m

10M�

)−1(
M

106M�

)1.19

. (25)

This can be compared to the relaxation time defined by
Eq. (14), where we can substitute rc with the influence
radius ri ≈ 2GM/σ2 of the central MBH. By using the
M–σ relation of Gültekin et al. [18] and assuming ln Λ =
10, we can compute the ratio of the two timescales:

td
trelax

' 1.2

1 +Np

(
m

10M�

)−1(
M

106M�

)0.06

. (26)
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Although Eq. (26) is valid for an isothermal density pro-
file and employed a specific M–σ relation [98], we veri-
fied that for more sophisticated Dehnen profiles [99] and
alternative scaling relations the result holds within a fac-
tor of 2. The ratio is roughly independent of mass (but
does depend on the adopted M–σ relation), and most
importantly, it is larger than unity only if Np ≈ 0. In
this case, the depletion time is longer than the relaxation
time and we can therefore assume that the EMRI rate is
sustainable. However, since in general there are several
plunges per EMRI, td/trelax < 1 and a steady state situ-
ation where the EMRI rate is given by Eq. (23) cannot
be sustained. We therefore define a duty cycle

Γ = min

{
td
trelax

, 1

}
, (27)

and a sustainable EMRI rate is given by ΓR0.
We can now compute a MBH mass growth by combin-

ing this rate with the amount of time a given MBH is
surrounded by a cusp, and is therefore a potential EMRI
host. We define this time as

tEMRI =

∫
dz

dt

dz
p0(M, z), (28)

where p0(M, z) is given by Eq. (21) and represents the
probability that a MBH of a particular mass is hosted
in a stellar cusp as a function of redshift. This time is
plotted in the lower panel of Figure 4 and, as expected,
is essentially the Hubble time TH at M < 105M� and
rapidly drops to 2 Gyr at M > 106M�. The mass growth
is then

∆M = mΓR0tEMRI. (29)

Even with the corrective factor of Eq. (27), the supply
of COs on inspiralling and plunging orbits can overgrow
MBHs. If, for example, tEMRI = TH and m = 10M�
is the mass of the accreted CO, then from Eq. (29)
∆M = mΓR0TH >∼ M for M ≈ 104M�. For a practical
computation of the rate we therefore introduce a damp-
ing factor to (arbitrarily) cap the maximum allowed mass
growth to be exp(−1)M , so that the MBH can at most
grow by an e-fold due to CO accretion in its lifetime.
We pick Np and compute Γ from Eq. (26) considering a
specific M–σ relation, and then calculate, for each MBH
mass, ∆M from Eq. (29). Using this, the damping factor
is defined as

κ = min

{
exp(−1)

M

∆M
, 1

}
. (30)

Incorporating this, the effective EMRI rate is given by:

R = κΓR0. (31)

Examples of the impact of the factors Γ and κ on the
EMRI rate R are shown in the upper panel of Figure 4.
From Eq. (25), it is clear that the value of the Γ factor,

FIG. 4. Top panel: The adjusted EMRI rate computed ac-
cording to Eq. (31). The three (central) thick lines assume
Np = 10 and correspond to the pessimistic (KormendyHo13,
short-dashed orange), fiducial (Gultekin09, solid turquoise)
and optimistic (GrahamScott13, long-dashed violet) M–σ re-
lations. The two thin turquoise lines show the rates for
the fiducial model, but assuming Np = 0 (lower curve) and
Np = 100 (upper curve). Lower panel: The average time
tEMRI that a MBH of a given mass is surrounded by a stellar
cusp, and is therefore a potential EMRI source, as implic-
itly defined by Eq. (28). The curves are for the same three
different M–σ relations in the top panel.

and hence R, depends critically on Np. We therefore ex-
plore three different models featuring Np = 0, 10, and
100. Since Γ ≈ 1 for Np = 0, Np has the obvious effect of
renormalizing the EMRI rate. Eq. (26) implies that R0

given by Eq. (23) is close to the supply CO rate allowed
by relaxation; if a large fraction of those COs result in
direct plunges rather than EMRIs, the EMRI rate must
drop accordingly. Different M–σ relations alter the slope
of the rate as a function of mass because of its influence
on the relaxation time and so Γ. The κ factor affects
the rates mostly for masses below ∼ 105M�, where over-
growth by CO accretion is easy. This makes our EMRI
estimates conservative since it implies a rate suppression.
We will see later that most of LISA detections come from
systems with M > 105M�, and therefore our results are
not severely impacted by the introduction of this damp-
ing factor.

1. Eccentricity and inclination

To estimate the distribution of EMRI eccentricities at
the last stable orbit (LSO), we evolved a large sample of
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COs from their typical capture radius (which is of the
order of 0.01 pc for a 106M� central MBH [43]) to final
plunge. We found a rather flat eccentricity distribution
at plunge in the range 0 < ep < 0.2, with a small tail
of outliers with higher ep. In the following, we therefore
assume a flat distribution in the range 0 < ep < 0.2 for
simplicity.

Finally, the rates in Eq. (23) have been computed in
the nonspinning approximation. As a consequence of
frame-dragging effects, the location of the LSO of a test
particle orbiting a spinning MBH depends on the incli-
nation of its orbital angular momentum with respect to
the MBH spin, θinc, and on whether the orbit is prograde
(0 ≤ θinc ≤ π/2) or retrograde (π/2 ≤ θinc ≤ π). There-
fore, the rate R has to be adjusted using a spin-dependent
and inclination correcting factor W (a, θinc) [90]. The cor-
rection factor is based on the ratio of the semimajor axis
for the spinning case aKerr

LSO with respect to the nonspin-
ning case aSchw

LSO averaged over the eccentricity, that is [90]:

W (a, θinc) =

〈
aKerr

LSO(e)

aSchw
LSO (e)

〉
e

. (32)

In practice we use an averaged correcting factor W (a)
which is the result of averaging over the orbital inclina-
tion

W (a) = 〈W (a, θinc)〉θinc
. (33)

In terms of this function, the event rates for EMRIs in
the spinning case are related to the nonspinning approx-
imation by

RKerr(a) = RSchw [W (a)]−0.83 , (34)

assuming an old, segregated cusp of COs of mass 10M�
around the MBH [84, 100].

D. Putting the pieces together

In summary, the EMRI rate depends on a number of
ingredients, as we described above:

1. The MBH mass function, for which we assume two
models: Barausse12 and Gair10.

2. The MBH spin distribution, for which we explore
three cases: the near-maximally spinning distribu-
tion (a98); a flat spin distribution (aflat), and non-
spinning MBHs (a0).

3. The M–σ relation, defining the properties of the
stellar distribution surrounding the MBH, the cusp
regrowth time following MBH binary erosion, and
the EMRI duty cycle. We consider three relations:
Gultekin09, KormendyHo13 and GrahamScott13.
We also consider an extra model assuming the Gul-
tekin09 relation but with no cusp erosion.

4. The ratio of plunges to EMRIs, assumed to beNp =
0, 10 and 100.

5. The characteristic CO mass, for which we consider
both m = 10M� and m = 30M�.

Our default model is based on the self-consistent semi-
analytic code for MBH formation and cosmic evolution
developed in Barausse [67]. The MBH mass function
is therefore the Barausse12, and MBHs are consistently
maximally spinning (a98). We use the M–σ relation
Gultekin09 to compute the cusp regrowth time follow-
ing MBHB mergers and the EMRI duty cycle. We as-
sume a moderately large number of plunges per EMRI
Np = 10 and a characteristic CO mass m = 10M�.
Starting from this default set-up, we explore the effect
of each single ingredient listed above by varying them in-
dividually keeping all the other fixed. We further explore
the most optimistic and pessimistic models allowed by all
the combinations of the ingredients listed above.

In total, we consider 12 models that we label “Mx”
with x = 1, . . . , 12. The default setup described above
is indicated as M1, and the key to read the models and
their main properties are listed in Table I.

For each model we construct the population of EM-
RIs by Monte Carlo sampling from the distribution
d3N/(dM dz da) × p0(M, z)R(M,a). This gives a cat-
alog of EMRIs including the two masses (M,m), redshift
of the event z, and MBH spin a. To define each indi-
vidual event and construct EMRI waveforms we need to
specify 10 more parameters:

• Phase, sky position and orientation angles: we as-
sume that the sky position and spin orientation
vectors are distributed isotropically on the sphere.
The three phases at plunge corresponding to or-
bital phase, phase of precession of the periapsis and
phase of precession of the orbital plane are uni-
formly distributed between 0 and 2π.

• Inclination and eccentricity are distributed as de-
scribed in Section III C 1.

• Plunge times are taken to be uniform in [0, 2] yr.
We ignore events that plunge after the end of
the mission duration, although they might be de-
tectable if they are close enough.

Table I illustrates the potential range in the intrinsic
EMRI rate. The last column lists the number of EMRIs
occurring in the Universe in 1 year (observed at Earth)
up to z = 4.5 (for model M4 we also report the rate up
to z = 6.5 in parentheses).

Numbers span more than three order of magnitudes,
ranging from about 10 to 20000. The variation is mostly
due to the unknown number of plunges and to the poorly
constrained MBH mass function at M < 106M�. Cusp
erosion has a relative minor effect on the rates (a factor
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Mass MBH Cusp M–σ CO EMRI rate [yr−1]
Model function spin erosion relation Np mass [M�] Total Detected (AKK) Detected (AKS)

M1 Barausse12 a98 yes Gultekin09 10 10 1600 294 189

M2 Barausse12 a98 yes KormendyHo13 10 10 1400 220 146

M3 Barausse12 a98 yes GrahamScott13 10 10 2770 809 440

M4 Barausse12 a98 yes Gultekin09 10 30 520 (620) 260 221

M5 Gair10 a98 no Gultekin09 10 10 140 47 15

M6 Barausse12 a98 no Gultekin09 10 10 2080 479 261

M7 Barausse12 a98 yes Gultekin09 0 10 15800 2712 1765

M8 Barausse12 a98 yes Gultekin09 100 10 180 35 24

M9 Barausse12 aflat yes Gultekin09 10 10 1530 217 177

M10 Barausse12 a0 yes Gultekin09 10 10 1520 188 188

M11 Gair10 a0 no Gultekin09 100 10 13 1 1

M12 Barausse12 a98 no Gultekin09 0 10 20000 4219 2279

TABLE I. List of EMRI models considered in this work. Column 1 defines the label of each model. For each model we specify
the MBH mass function (column 2), the MBH spin model (column 3), whether we consider the effect of cusp erosion following
MBH binary mergers (column 4), the M–σ relation (column 5), the ratio of plunges to EMRIs (column 6), the mass of the
COs (column 7); the total number of EMRIs occurring in a year up to z = 4.5 (column 8; for model M4 we also show the total
rate per year up to z = 6.5); the detected EMRI rate per year, with AKK (column 9) and AKS (column 10) waveforms. The
AKK and AKS waveforms are introduced in Section IV, and bracket waveform modelling uncertainties.

of 2).2 Even smaller is the effect of spin, affecting EMRI
rates at the 10% level; there are more EMRIs when spins
are higher as the LSO is smaller (and so it is more diffi-
cult to directly plunge [90]), but this only affects a small
portion of orbits. However, we will see that spins will
play a more important role in the detectability of these
events by LISA. Changing the M–σ relation, which sets
the relation between the MBH and its surrounding popu-
lation of COs, can introduce a variation of about a factor
of 2. More significant are the mass of the COs and the
number of plunges, as both of these directly impact the
mass accreted by the MBH and so the necessary duty
factor to preserve the population of MBHs. An increase
in either m or Np by a factor of X reduces the EMRI rate
by a similar factor. Since we are more uncertain of the
number of plunges, this has a greater potential impact on
the expected rate, here changing it by almost two orders
of magnitude. A drop of about one order of magnitude
is achieved by switching to the pessimistic MBH mass
distribution, as the reduction in the number of MBHs
naturally decreases the number of EMRIs.

For each of the 12 models outlined above we generate
10 Monte-Carlo realizations of the expected population
of EMRIs plunging in 1 year. We therefore construct
a library of 120 catalogs that includes all EMRI events
occurring in the Universe in 10 years for the 12 models.

2 This could be up to a factor of 4 if kick velocities of few hundred
km s−1 are considered in the computation of the cusp regrowth
timescale (cf. Eq. 9).

IV. WAVEFORMS, SIGNAL ANALYSIS AND
PARAMETER ESTIMATION

Having generated astrophysical populations of EMRI
systems, we need to determine which of the systems will
be observed by LISA. To do this, we need a model of
the GW emission from an EMRI system. Accurate grav-
itational waveforms from EMRIs can be computed using
BH perturbation theory, exploiting the large difference
in masses of the two objects to regard the smaller as a
perturbation of the spacetime of the larger and construct
an expansion in the mass ratio (see [101] for a review).
Perturbative calculations have not yet been completed
to the order necessary to accurately track the phase of
an EMRI over an entire inspiral, and these calculations
are extremely computationally expensive. Two approxi-
mate EMRI models have therefore been developed, which
capture the main features of EMRI waveforms at much
lower computational cost and can therefore be used to
explore questions connected to the detection and scien-
tific exploitation of EMRI observations. Of the two mod-
els, the numerical kludge [102, 103] is the more accurate
and is based on modelling the trajectory of the smaller
object as a geodesic of the Kerr background, with inspi-
ral imposed on the system. With further enhancements,
the numerical-kludge model may be accurate enough for
use in LISA data analysis. However, it is still relatively
computationally expensive. The analytic kludge (AK)
model [51] is computationally cheaper, at the cost of less
faithfulness to real EMRI signals. The AK model ap-
proximates gravitational wave emission by that from a
Keplerian orbit [104], with precession of the orbital per-
ihelion, precession of the orbital plane, and inspiral of
the orbit added using post-Newtonian prescriptions. The
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AK model provides only an approximation to the true
strong-field dynamics, as the orbital frequencies do not
exactly match [105], and features such as the final plunge
or transient resonances [64, 106] are neglected and cannot
be readily incorporated. However, the model is cheap to
generate and it should include the most important quali-
tative features of real EMRI signals. The simplicity of the
model allows it to be generated in the large numbers re-
quired to examine EMRI science questions such as those
being explored in this paper, and so we use it here. The
AK model has been widely used for similar applications
in the literature, in particular it was the EMRI model
used in the context of the Mock LISA Data Challenges
(MLDCs) [107–110].

The AK model is known to be imperfect, and so in
order to quantify inaccuracies we consider two different
variants. In the classic work by Barack and Cutler [51],
the AK model was cut off when the orbital frequency
reached the value corresponding to the Schwarzschild
LSO. We denote this form of the AK model by “AKS”,
where the “S” stands for “Schwarzschild”. Prograde in-
spirals into spinning MBH can get much closer before
plunge, generating many cycles of higher frequency and
amplitude. Thus, omitting those cycles from the model is
likely to significantly underestimate the possible signal-
to-noise ratio (SNR). An alternative is to continue the
inspiral until the frequency reaches the Kerr ISCO. We
denote this form of the AK model by “AKK”, where the
“K” stands for “Kerr”. The post-Newtonian evolution
equations used to construct the AK model are increas-
ingly inaccurate as the orbital separation decreases, and
so the additional portion of inspiral included in the AKK
model is unlikely to be accurately represented, and most
likely will lead to an over-estimate of the SNR. We will
present results for both the AKK model and the AKS
model in order to quantify the uncertainty that comes
from the modelling assumptions. SNRs can also be com-
puted using results from BH perturbation theory, in par-
ticular solutions to the Teukolsky equation, which pro-
vides the first-order radiative part of the perturbative
evolution. Teukolsky results for circular, equatorial in-
spirals into spinning BHs were presented in Finn and
Thorne [111], and we can use those results to assess the
accuracy of the AKS and AKK prescriptions.

Finn and Thorne [111] tabulate their results in terms
of corrections relative to a Newtonian inspiral. By set-
ting those corrections equal to 1 we can obtain SNRs
for Newtonian inspirals, which we can terminate at the
Schwarzschild ISCO or at the Kerr ISCO. This provides
an approximation to the AK model, which is built on
Newtonian inspirals, albeit with precession added and
inspiral augmented by higher order corrections. Figure 5
shows the sky-averaged horizon distance for a prograde,
circular, equatorial inspiral into a black hole with spin
a = 0.99, computed either using the Teukolsky fluxes, or
using Newtonian inspirals truncated at the two different
ISCOs. We see that, as expected, the approximate AKS
and AKK horizons bracket the accurate Teukolsky hori-
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FIG. 5. The redshift at which the sky-averaged SNR of a
prograde, circular, equatorial EMRI into a MBH with spin
a = 0.99 reaches the threshold % = 20. The horizon is shown
as a function of intrinsic MBH mass and for the two differ-
ent choices of the compact object mass used in these studies,
m = 10M� and m = 30M�. The horizon is computed us-
ing accurate Teukolsky fluxes and using a Newtonian inspiral
truncated either at the Schwarzschild ISCO, labelled “AKS”,
or at the Kerr ISCO, labelled “AKK”. Individual sources may
be detected to even larger distances if their orientation is near
optimal.

zon. The AKS horizon suggests increased sensitivity to
lower mass black holes, while the AKK horizon has peak
sensitivity at the same MBH mass as the Teukolsky hori-
zon. Although these are just approximations to the true
AKS and AKK horizons, we expect the true horizons to
have the same shape with the AKS horizon extending to
slightly higher redshift than the Newtonian calculations
indicate and the AKK horizon to slightly lower redshift,
still bracketing the true horizon.

Given a waveform model, we represent the sensitiv-
ity of LISA to a given EMRI by a simple SNR thresh-
old. If the EMRI has SNR above the specified threshold,
the system will be detected, otherwise it will not. Early
work on EMRIs assumed that an SNR of 30 would be
required for detection, to allow for the complexities of
LISA data analysis [62]. However, in the MLDCs EMRI
signals with SNRs as low as ∼ 15 were successfully iden-
tified, albeit under idealized conditions [110]. Therefore,
we use a more modest SNR threshold of 20. The SNR is
calculated as

% = 〈h|h〉1/2 (35)

using the noise-weighted inner product [112]

〈g|h〉 = 2

∫ ∞
0

g̃(f)h̃∗(f) + g̃∗(f)h̃(f)

Sn(f)
df, (36)

where the EMRI signal is denoted by h(t;Θ), Θ repre-
sents the parameters of the signal, a tilde indicates the
Fourier transform of the signal, and Sn(f) is the noise
power spectral density.
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In the limit of suitably high SNR [113], the likeli-
hood for the parameters can be approximated as a Gaus-
sian [114]

L(Θ) ∝ exp

−1

2

∑
i, j

〈
dh

dΘi

∣∣∣∣ dh

dΘj

〉
∆Θi∆Θj

 , (37)

where ∆Θi represents the displacement from the peak of
the distribution (which coincides with the true value in
this approximation) for the i-th parameter. The Fisher
matrix has elements

Γij =

〈
dh

dΘi

∣∣∣∣ dh

dΘj

〉
, (38)

and the covariance matrix (the inverse of the Fisher ma-
trix) gives the Cramér–Rao bound on the true width
of the distribution [113]. The variance (uncertainty
squared) for the i-th parameter can be approximated by
σ2
i = (Γ−1)ii.

V. RESULTS

With a number of astrophysically motivated EMRI
populations and models of the EMRI waveforms in hand,
we are all set to investigate the performance of the LISA
detector. The AKS and AKK waveforms introduced in
Section IV are likely to respectively under- and over-
estimate typical EMRI SNRs. In the absence of a more
accurate, computationally inexpensive waveform model,
we present results for both, with the understanding that
they likely bracket the true performance.

A. Detection rates

To convert from the intrinsic number of EMRIs sum-
marized in Table I to the number of LISA detections, we
must compute the SNR of the GW signal and compare
to a detection threshold, which we take to be an SNR
of % = 20, as mentioned earlier. The SNR calculation
depends on the waveform model; we expect the AKK
waveforms to produce larger SNRs due to the extrapola-
tion to the Kerr ISCO, resulting in more detectable EM-
RIs and up to higher redshifts. The SNR distribution
of the events above detection threshold is shown in Fig-
ure 6. The distribution approximately follows the char-
acteristic dN/d log ρ ∝ ρ−3 behavior of sources uniformly
distributed in (Euclidean) volume [115], with small devi-
ations due to cosmological evolution. As expected AKK
waveforms lead to a larger number of detections, which
is reflected in the higher normalization of the distribu-
tion. For models predicting several hundred sources per
year (cf. Table I), we predict few events in the tail of the
distribution, extending to SNR of a few hundred.

Figure 7 shows the number of detectable signals by us-
ing the AKS and AKK waveform models (the rates are

also reported in the last two columns of Table I), and
compares these to the total intrinsic rates reported in
Table I. Based on the Teukolsky horizons shown in Fig-
ure 5, and to save computational time, we considered
EMRI populations up to z = 4.5 for all models with CO
mass of 10M�, and up to z = 6.5 when the CO mass is
30M� (M4). We will see below that these maximum red-
shifts are not sufficient to capture all systems detectable
using AKK waveforms. We consider this acceptable since
AKK waveform generally overestimate EMRI SNR, and
the number of missing events amount to at most a few
percent, and thus do not significantly impact our results.
As expected, the rates calculated with the AKK model
are generally larger because they produce larger SNRs
for spinning MBHs. Models M10 and M11 predict the
same detectable rates with AKS and AKK waveforms,
since they assume that the MBH spins are zero, in which
case AKS and AKK waveforms coincide. When using
the AKS model the fraction of detectable events is about
10%, independent on the exact features of the model,
except for M4 where it increases to around 35%. For
the AKK waveform, different spin distributions result in
different detection fractions, but these still fall between
10% and 20% in most cases. The expected detection rate
is therefore roughly proportional to the intrinsic EMRI
rate and ranges between 1 yr−1 and 2000 yr−1 due to se-
vere uncertainties in EMRI astrophysics and dynamics,
as discussed in Section III.

The fraction of detected events provides clear evidence
that EMRI distributions are largely self-similar across
the different models, which is confirmed by the (source-
frame) mass and redshift distributions of the detected
events shown in Figure 8 and Figure 9. The sharp z = 4.5
cut-off for the AKK case is due to the maximum redshift
of the generated population and not to an intrinsic lim-
itation in the detectability of high redshift sources; the
small fraction of the number of missing sources should
not significantly impact our results. The most common
MBH mass is typically between 105M� and 106M� in all
models. The results based on the AKK waveforms show
the detection of more EMRIs into MBHs of larger mass
(up to 107M�), when MBHs are spinning. This is be-
cause for such high mass MBHs a prograde inspiral gen-
erates a significant number of waveform cycles between
the Schwarzschild ISCO frequency and the final plunge,
and these cycles are at frequencies in the most sensitive
range for the LISA detector. Thus, the AKS waveforms
omit a significant fraction of the SNR for such systems
and underestimates their detectability. This extra con-
tribution to the SNR also allows sources to be seen to
further redshift, as illustrated in Figure 9.

Taken together, Figures 8 and 9 show that EMRI
observations will cover MBHs of 3 × 104M� < M <
3 × 106M� over a redshift range that is broadly peaked
at 0.5 < z < 2, thus probing a region of the MBH mass–
redshift plane that is complementary to both electromag-
netic probes of galactic nuclei and LISA observations of
MBH binaries. Conventional electromagnetic observa-
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FIG. 6. SNR distribution for detectable events with AKS and AKK waveforms for all considered models.
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FIG. 7. Top panel: Event rates (detected and intrinsic) as
function of the astrophysical model. Lower panel: Fraction
of detection with ρ > 20 with respect to the total number of
EMRIs featuring a central MBH with 104M� < M < 107M�,
considering all events at z < 4.5 (z < 6.5 for M4).

tions at these low masses out to z ≈ 2 are extremely
challenging, whereas the bulk of LISA MBH binary ob-
servations are expected to be at z > 5, with only few
events expected at z < 2 (cf. [116]). EMRIs are a unique
opportunity to obtain a large sample of confirmed MBHs
at relatively low redshift. Figure 8 further highlights that
the number of detected EMRIs is sensitive to the mini-
mum mass scale of nuclear MBHs (Alexander and Bar-

Or [93] recently proposed a universal lower limit of about
2×105M�), but in the majority of the investigated mod-
els, we predict a few detections at M > 106M�, which
is a relatively safe mass range as it has already been ex-
plored by MBH measurements in the local Universe (see,
e.g., [117]).

Examples of LISA’s completeness as an EMRI survey
are given in Figure 10, where we plot the fraction of de-
tected sources in the (source-frame) mass–redshift plane
for selected models. In the default M1 case, LISA will
provide an essentially complete survey in the 105M�–
106M� mass range, out to z ≈ 1, and it is still 50%
complete at z ≈ 3 when AKK waveforms are considered.
If inspiralling COs are massive (M4), the survey is com-
plete out to z ≈ 2 and still 50% complete out beyond
z ≈ 4 for AKK waveforms.

B. Parameter estimation

Typical EMRIs spend O(105) orbits in the LISA fre-
quency band, and key parameters of the system are en-
coded in the fine details of the waveform phasing mod-
ulation (see, e.g., [51]). The redshifted MBH mass Mz

sets the characteristic observed frequencies for the EMRI.
The rate of inspiral is controlled by the mass ratio, and
so gives constraints on the redshifted CO mass mz. The
MBH spin a also influences the orbital frequencies, and
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FIG. 8. MBH mass distribution for detectable events with AKS and AKK waveforms.

FIG. 9. Redshift distribution for detectable events with AKS and AKK waveforms. A maximum source redshift of 4.5 is
assumed for all models except M4, where the maximum redshift is 6.5.
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FIG. 10. Fraction of the intrinsic EMRI population detectable by LISA as a function of source-frame total mass and redshift,
for models M1 and M4 and with AKS and AKK waveforms.

becomes more important as the inspiral gets closer to the
MBH; the spin sets the LSO and the transition to plung-
ing.3 The orbital eccentricity e also affects the orbital
frequencies; GW emissions tends to circularize the orbit,
so eccentricity is more noticeable earlier in the inspiral.

The large number of cycles completed during the in-
spiral allow us to obtain exquisite constraints on all the
intrinsic parameters, as shown in Figure 11.4 Even in
the conservative AKS case, the median relative error on
both redshifted masses is in the range 10−4–10−5 for es-
sentially all models; the spin of the central MBH and the
eccentricity at plunge are measured to an absolute pre-
cision of about 10−4 and 10−5 respectively. Parameter-
estimation precisions for the intrinsic parameters are gen-
erally better when calculated using AKK waveforms than
the AKS waveforms (except for the nonspinning models

3 The end of the waveform, when the CO plunges into the MBH,
also encodes some information which is not captured by these
Fisher-matrix estimates [118]. However, the instantaneous SNR
in an EMRI is sufficiently low that the plunge is not well re-
solved, and therefore the inclusion of the plunge should make
little difference to parameter estimation.

4 All uncertainties are 1σ values, except for the sky-localization
error ∆Ω, which is the area of an error ellipse for which there is
a probability exp(−1) of the source being outside of it.

M10 and M11, for which the AKS and AKK waveforms,
and their parameter-estimation errors, coincide). This is
because of the additional information coming from the
late inspiral near the Kerr LSO. The difference is most
pronounced for the CO mass and MBH spin (for which
the measurement improves by a factor of ≈ 30 on av-
erage). The difference is less striking for the MBH mass
and (especially) the eccentricity: estimation for the latter
improves on average by less than a factor of 10 because
it is mostly constrained by the early inspiral.

Extrinsic parameters such as sky location and distance
are primarily determined through the signal amplitude
and its modulation as LISA orbits the Sun. These pa-
rameters are not strongly dependent upon the GW phase,
and hence the large number of cycles completed by an
EMRI does not translate to high-precision measurements
here. Figure 12 shows that the precision of extrinsic
parameter measurement is essentially insensitive to the
waveform model. The SNR of an individual source may
be higher using the AKK waveform, but the overall dis-
tribution of SNRs remains largely the same as more quiet
signals become detectable [115], and the typical precision
in parameter determination is unaffected. On average,
the luminosity distance is measured to 5–10% precision.
The luminosity distance is required to convert the ob-
served redshifted masses back to their true source val-
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FIG. 11. Distribution over observed EMRIs of the expected statistical errors (1σ uncertainties as computed using the Fisher
matrix) in the measurement of intrinsic parameters: central MBH redshifted mass (top left), spin (top right), CO mass (bottom
left) and eccentricity at plunge (bottom right). The dashed lines mark the first, second and third quartile of the distributions.

ues. Distance uncertainty will therefore be the dominant
source of uncertainty in mass measurements.

The sky localization is usually better than 10 deg2.
This is the typical field of view of future large optical and
radio facilities such as the Large Synoptic Survey Tele-
scope [119] or the Square Kilometre Array [120]. EMRIs
localized to this accuracy can therefore be covered with
a single pointing to check for the possible presence of
electromagnetic counterparts, which could be associated
with the interaction between the CO and an MBH ac-
cretion disk [56, 58–60]. Electromagnetic counterparts
would be easiest to observe from close by sources, which
would also be the loudest, and so the best localized (usu-
ally to better than 1 deg2). Identifying a source galaxy
from an electromagnetic counterpart would allow for an
independent redshift measurement, which would improve
the precision of the (source-frame) mass measurements.

Finally, the precise measurements provided by EMRI
observations allow us to maps the spacetime of the MBH
and check its Kerr nature. The multipolar structure of
the Kerr metric is completely determined by its mass and
spin. According the no-hair theorem, the quadrupole

moment is given by QK = −a2M3 [121] (see e.g. [54]
for a review of tests of the no-hair theorem with LISA).
Since EMRIs are expected to probe the multipolar struc-
ture of the central MBH spacetime to high accuracy [46–
50], they will be able to confirm if the quadrupole mo-
ment obeys the expected Kerr relation [122]. In Fig-
ure 13 we show the precision with which possible devi-
ations Q away from the Kerr quadrupole can be con-
strained. We plot the error on the dimensionless quan-
tity Q ≡ (Q − QK)/M3 (which is independent of the
redshifting of masses). We do not consider any particu-
lar modified theory of gravity: the parameter Q is just a
phenomenological parametrization of hypothetical devi-
ations from the general-relativistic quadrupole moment,
and we are interested in determining what level of devia-
tion would be measurable. As expected, Q is better con-
strained by using AKK waveforms, since the effect of a
modified quadrupole become important only at small dis-
tances from the MBH, i.e. in the late inspiral and plunge.

Overall, for all the parameters that we considered, the
distributions of the errors are broadly consistent between
the different population models. The populations control
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the number of events, and so are important for consid-
ering how much we could learn about the population of
MBHs and their host environments, but do not have a
significant impact on our ability to extract the parame-
ters for individual EMRIs.

VI. CONCLUSIONS

In this paper we have performed a comprehensive anal-
ysis of the performance of the recently proposed LISA
mission with regards to the detection and parameter
estimation of EMRIs. For the first time we have at-
tempted to thoroughly investigate the astrophysical un-

certainties that affect the calculations of the expected
intrinsic EMRI rate. In more detail, we have constructed
competing astrophysical models for the EMRI rate as a
function of cosmic time, accounting for: the uncertainty
on the expected MBH spin magnitude; the disruption
of stellar cusps due to mergers; the MBH growth due
to EMRIs and plunges of stellar-mass CO’s; and possi-
ble viable competing choices for the MBH mass function,
the CO mass, and the correlation between MBH masses
and stellar velocity dispersions. Although simple, our
models capture the diversity of plausible astrophysical
uncertainties. Overall, we find that these astrophysical
assumptions produce a variance of up to three orders of
magnitude in the expected intrinsic EMRI rate.

For each astrophysical model, we have computed the
number of expected detections with the LISA interfer-
ometer, as well as the precision with which the source
parameters (both intrinsic and extrinsic) can be recov-
ered. To this purpose, because of computational-time
limitations, we have used two time-inexpensive kludge
waveform models [51] that we expect should bracket the
results that would be obtained with more sophisticated
Teukolsky or self-force based templates (cf. Fig. 5). Our
main findings are:

1. Irrespective of the astrophysical model, at least a
few EMRIs per year should be detectable by LISA.
This number may reach a few thousands per year
under the most optimistic astrophysical assump-
tions.

2. Except for the most pessimistic astrophysical mod-
els, we predict at least a few events per year should
be observable with SNR of several hundreds.

3. The typical (source-frame) mass and redshift range
of detected EMRIs will be M ∼ 105–106M� and
z <∼ 2–3, although we may have events with masses
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an order of magnitude outside of this range or with
larger redshifts (up to z ∼ 4 and z ∼ 6 for COs of
10M� and 30M�, respectively) in all but the most
pessimistic astrophysical models.

4. Typical fractional statistical errors with which
the intrinsic EMRI parameters (redshifted masses,
MBH spin and orbital eccentricity) are expected to
be recovered are of the order of 10−6–10−4. Tests of
the multipolar structure of the Kerr metric, which
only depend upon these mass and spin measure-
ments, can be performed to percent level precision
or better. To convert the redshifted masses to the
intrinsic source-frame masses requires the luminos-
ity distance, which is typically inferred to 10% pre-
cision. Sky localization is usually of the order of
a few square degrees. It is crucial to model the
gravitational waveforms in the late inspiral near
the plunge to accurately extract the intrinsic pa-
rameters, but this has little impact on the extrinsic
parameters.

These observations could have impact in three distinct
areas: astrophysics, cosmology and fundamental physics.

We have seen that LISA will provide precise measure-
ments of the parameters of individual systems, but more
information about the astrophysics of these sources will
come from studies of populations. It was shown in Gair
et al. [61] that the observation of just 10 EMRIs with
the classic 5 Gm LISA configuration would be sufficient
to measure the slope of the MBH mass function in the
local Universe to a precision of ±0.3. This is the level
to which it is currently constrained by electromagnetic
observations [61]. The precision with which LISA can
measure EMRI parameters does not depend strongly on
the configuration of the instrument, so this conclusion
should carry over to the current analysis. In all the mod-
els except the most pessimistic ones, we expect to see
many more than 10 EMRIs, so we would expect to be
able to do a high precision measurement of the MBH
mass function. One caveat is that what we can measure
is the convolution of the MBH mass function with the
rate of EMRIs per MBH, not the mass function itself. In
Gair et al. [61] it was assumed that the latter was known,
but as we have described here there are many significant
uncertainties. It is an open question as to whether these
uncertainties can be reduced or at least quantified, or
whether LISA observations will be able to decouple them,
for instance by using information from the observed MBH
mergers. In addition to the MBH mass function, EMRI
observations will provide information on the MBH spin
distribution, on the properties of the stellar populations
in the centers of galaxies and on the relative efficiency of
the mechanisms that lead to EMRI formation.

Observations of GW sources provide measurements of
the luminosity distance that can be used to measure the
expansion history of the Universe [123]. Individual events
do not provide redshifts, but such constraints can be de-
termined statistically. In MacLeod and Hogan [124] it

was shown that if LISA observed ∼ 20 EMRI events at
a redshift z < 0.5 it would be possible to determine the
Hubble constant to better than 1% by using statistical
redshifts estimated from galaxy surveys. We find that all
but four of our models predict more than 20 EMRI events
at z < 0.5.5 However, in MacLeod and Hogan [124] it
was assumed that LISA would determine the luminosity
distance and sky location of an EMRI at redshift z to
precisions ∆(lnDL) < 0.07z and ∆Ω < 16z2, which were
appropriate for the classic 5 Gm LISA configuration, but
are optimistic for the current configuration [29]. We find
that in the models which have 20 EMRIs at z < 0.5,
there are at least 5 that also meet the assumed error
constraint. If we used only the events at z < 0.5, and
with errors smaller than these bounds, we would there-
fore expect to determine the Hubble constant to at least
∼ 2%. However, the events with larger errors and events
at higher redshift will also contribute to the bound, so
we are likely to do better than this, and this should be
further explored. In addition, our results show that EM-
RIs could be detected to much higher redshift than once
assumed, which will provide constraints on other cosmo-
logical parameters.

The final scientific application of EMRI observations
is to tests of fundamental physics. We have already dis-
cussed one such application of EMRI observations, the
measurement of the quadrupole deviation from the Kerr
metric characterized by Q. Every EMRI will provide a
percent or better constraint on that parameter, which
is comparable to the expectations for the classic LISA
mission configuration. This is no surprise, as the key re-
quirement for a test of fundamental physics is to track
the phase of an EMRI over a full inspiral, which has to
be done in order to find the EMRI in the data using
matched filtering. Thus, any EMRI that is detected will
provide a powerful test of fundamental physics, and all of
the tests previously discussed in the literature should be
possible (see Gair et al. [54] for a review). Our ability to
do this science will not be significantly influenced by the
particular astrophysical model, although the models that
predict larger rates of EMRI events will more likely lead
to the detection of a golden EMRI which is particularly
close, has high SNR and, therefore, provides particularly
strong constraints.
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