151 research outputs found

    Adiabatic reduction of models of stochastic gene expression with bursting

    Full text link
    This paper considers adiabatic reduction in both discrete and continuous models of stochastic gene expression. In gene expression models, the concept of bursting is a production of several molecules simultaneously and is generally represented as a compound Poisson process of random size. In a general two-dimensional birth and death discrete model, we prove that under specific assumptions and scaling (that are characteristics of the mRNA-protein system) an adiabatic reduction leads to a one-dimensional discrete-state space model with bursting production. The burst term appears through the reduction of the first variable. In a two-dimensional continuous model, we also prove that an adiabatic reduction can be performed in a stochastic slow/fast system. In this gene expression model, the production of mRNA (the fast variable) is assumed to be bursty and the production of protein (the slow variable) is linear as a function of mRNA. When the dynamics of mRNA is assumed to be faster than the protein dynamics (due to a mRNA degradation rate larger than for the protein) we prove that, with the appropriate scaling, the bursting phenomena can be transmitted to the slow variable. We show that the reduced equation is either a stochastic differential equation with a jump Markov process or a deterministic ordinary differential equation depending on the scaling that is appropriate. These results are significant because adiabatic reduction techniques seem to have not been applied to a stochastic differential system containing a jump Markov process. Last but not least, for our particular system, the adiabatic reduction allows us to understand what are the necessary conditions for the bursting production-like of protein to occur.Comment: 24 page

    Boundary value for a nonlinear transport equation emerging from a stochastic coagulation-fragmentation type model

    Full text link
    We investigate the connection between two classical models of phase transition phenomena, the (discrete size) stochastic Becker-D\"oring, a continous time Markov chain model, and the (continuous size) deterministic Lifshitz-Slyozov model, a nonlinear transport partial differential equation. For general coefficients and initial data, we introduce a scaling parameter and prove that the empirical measure associated to the stochastic Becker-D\"oring system converges in law to the weak solution of the Lifshitz-Slyozov equation when the parameter goes to 0. Contrary to previous studies, we use a weak topology that includes the boundary of the state space (\ie\ the size x=0x=0) allowing us to rigorously derive a boundary value for the Lifshitz-Slyozov model in the case of incoming characteristics. The condition reads limx0(a(x)u(t)b(x))f(t,x)=αu(t)2\lim_{x\to 0} (a(x)u(t)-b(x))f(t,x) = \alpha u(t)^2 where ff is the volume distribution function, solution of the Lifshitz-Slyozov equation, aa and bb the aggregation and fragmentation rates, uu the concentration of free particles and α\alpha a nucleation constant emerging from the microscopic model. It is the main novelty of this work and it answers to a question that has been conjectured or suggested by both mathematicians and physicists. We emphasize that this boundary value depends on a particular scaling (as opposed to a modeling choice) and is the result of a separation of time scale and an averaging of fast (fluctuating) variables.Comment: 42 pages, 3 figures, video on supplementary materials at http://yvinec.perso.math.cnrs.fr/video.htm

    The Becker-Döring process: law of large numbers and non-equilibrium potential

    Get PDF
    In this note, we prove alaw of large numbersfor an infinite chemical reactionnetwork for phase transition problems called the stochastic Becker-Döring process.Under a general condition on the rate constants we show the convergence in lawand pathwise convergence of the process towards the deterministic Becker-Döringequations. Moreover, we prove that the non-equilibrium potential, associated to thestationary distribution of the stochastic Becker-Döring process, approaches the rela-tive entropy of the deterministic limit model. Thus, the phase transition phenomenathat occurs in the infinite dimensional deterministic modelis also present in the finitestochastic model.In this note, we prove alaw of large numbersfor an infinite chemical reactionnetwork for phase transition problems called the stochastic Becker-Döring process.Under a general condition on the rate constants we show the convergence in lawand pathwise convergence of the process towards the deterministic Becker-Döringequations. Moreover, we prove that the non-equilibrium potential, associated to thestationary distribution of the stochastic Becker-Döring process, approaches the rela-tive entropy of the deterministic limit model. Thus, the phase transition phenomenathat occurs in the infinite dimensional deterministic modelis also present in the finitestochastic model

    Adiabatic reduction of a model of stochastic gene expression with jump Markov process

    Full text link
    This paper considers adiabatic reduction in a model of stochastic gene expression with bursting transcription considered as a jump Markov process. In this model, the process of gene expression with auto-regulation is described by fast/slow dynamics. The production of mRNA is assumed to follow a compound Poisson process occurring at a rate depending on protein levels (the phenomena called bursting in molecular biology) and the production of protein is a linear function of mRNA numbers. When the dynamics of mRNA is assumed to be a fast process (due to faster mRNA degradation than that of protein) we prove that, with appropriate scalings in the burst rate, jump size or translational rate, the bursting phenomena can be transmitted to the slow variable. We show that, depending on the scaling, the reduced equation is either a stochastic differential equation with a jump Poisson process or a deterministic ordinary differential equation. These results are significant because adiabatic reduction techniques seem to have not been rigorously justified for a stochastic differential system containing a jump Markov process. We expect that the results can be generalized to adiabatic methods in more general stochastic hybrid systems.Comment: 17 page

    On the bursting of gene products

    Get PDF
    In this article we demonstrate that the so-called bursting production of molecular species during gene expression may be an artifact caused by low time resolution in experimental data collection and not an actual burst in production. We reach this conclusion through an analysis of a two-stage and binary model for gene expression, and demonstrate that in the limit when mRNA degradation is much faster than protein degradation they are equivalent. The negative binomial distribution is shown to be a limiting case of the binary model for fast "on to off" state transitions and high values of the ratio between protein synthesis and degradation rates. The gene products population increases by unity but multiple times in a time interval orders of magnitude smaller than protein half-life or the precision of the experimental apparatus employed in its detection. This rare-and-fast one-by-one protein synthesis has been interpreted as bursting.Comment: 13 page

    Human Luteinizing Hormone and Chorionic Gonadotropin Display Biased Agonism at the LH and LH/CG Receptors.

    Get PDF
    Human luteinizing hormone (LH) and chorionic gonadotropin (hCG) have been considered biologically equivalent because of their structural similarities and their binding to the same receptor; the LH/CGR. However, accumulating evidence suggest that LH/CGR differentially responds to the two hormones triggering differential intracellular signaling and steroidogenesis. The mechanistic basis of such differential responses remains mostly unknown. Here, we compared the abilities of recombinant rhLH and rhCG to elicit cAMP, β-arrestin 2 activation, and steroidogenesis in HEK293 cells and mouse Leydig tumor cells (mLTC-1). For this, BRET and FRET technologies were used allowing quantitative analyses of hormone activities in real-time and in living cells. Our data indicate that rhLH and rhCG differentially promote cell responses mediated by LH/CGR revealing interesting divergences in their potencies, efficacies and kinetics: rhCG was more potent than rhLH in both HEK293 and mLTC-1 cells. Interestingly, partial effects of rhLH were found on β-arrestin recruitment and on progesterone production compared to rhCG. Such a link was further supported by knockdown experiments. These pharmacological differences demonstrate that rhLH and rhCG act as natural biased agonists. The discovery of novel mechanisms associated with gonadotropin-specific action may ultimately help improve and personalize assisted reproduction technologies

    Molecular Distributions in Gene Regulatory Dynamics

    Get PDF
    We show how one may analytically compute the stationary density of the distribution of molecular constituents in populations of cells in the presence of noise arising from either bursting transcription or translation, or noise in degradation rates arising from low numbers of molecules. We have compared our results with an analysis of the same model systems (either inducible or repressible operons) in the absence of any stochastic effects, and shown the correspondence between behaviour in the deterministic system and the stochastic analogs. We have identified key dimensionless parameters that control the appearance of one or two steady states in the deterministic case, or unimodal and bimodal densities in the stochastic systems, and detailed the analytic requirements for the occurrence of different behaviours. This approach provides, in some situations, an alternative to computationally intensive stochastic simulations. Our results indicate that, within the context of the simple models we have examined, bursting and degradation noise cannot be distinguished analytically when present alone.Comment: 14 pages, 12 figures. Conferences: "2010 Annual Meeting of The Society of Mathematical Biology", Rio de Janeiro (Brazil), 24-29/07/2010. "First International workshop on Differential and Integral Equations with Applications in Biology and Medicine", Aegean University, Karlovassi, Samos island (Greece), 6-10/09/201
    corecore