
HAL Id: hal-00651588
https://hal.archives-ouvertes.fr/hal-00651588

Submitted on 13 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the bursting of gene products
Romain Yvinec, Alexandre F. Ramos

To cite this version:

Romain Yvinec, Alexandre F. Ramos. On the bursting of gene products. 2011. �hal-00651588�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49936995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00651588
https://hal.archives-ouvertes.fr


On the bursting of gene products

Romain Yvinec1, ∗ and Alexandre F. Ramos2, †

1Institut Camille Jordan UMR 5208 Université Claude Bernard Lyon
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Abstract

In this article we demonstrate that the so-called bursting production of molecular species during

gene expression may be an artifact caused by low time resolution in experimental data collection

and not an actual burst in production. We reach this conclusion through an analysis of a two-stage

and binary model for gene expression, and demonstrate that in the limit when mRNA degradation

is much faster than protein degradation they are equivalent. The negative binomial distribution

is shown to be a limiting case of the binary model for fast “on to off” state transitions and high

values of the ratio between protein synthesis and degradation rates. The gene products population

increases by unity but multiple times in a time interval orders of magnitude smaller than protein

half-life or the precision of the experimental apparatus employed in its detection. This rare-and-fast

one-by-one protein synthesis has been interpreted as bursting.
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Understanding the origin of fluctuations at the single cell level and how organisms deal

them to guarantee both developmental viability and evolutionary adaptation to a constantly

changing environment conditions is a challenge of the post-genomic era [3, 4]. Often, stochas-

ticity at the single cell level is due to the presence of biochemical reactants in low copy

number inside the cell [5] and heterogeneous spatial distribution [6]. Experimental tech-

niques to investigate these phenomena have been greatly enhanced by the use of fluorescent

molecules and technology to track the spatial and temporal behavior of individual molecules

[7, 8]. Despite the striking nature of the data these techniques provide, these advances do

not necessarily give the full picture of the dynamics of events at the single cell level such as

transcription and translation. One example is the measurement of the bursting production

of molecules, defined as an incremental increase in mRNA or protein number greater than

one at a given time. Bursting is often held to be the usual mechanism for the synthesis of

gene products [7, 8]. As we show here, the inference of bursting molecular production may

be an artifact due to a lack of sufficiently fine temporal resolution in experimental data.

Also, from a modeling perspective the inference of bursting may be flawed due to a reliance

on the shape of stationary probability distributions rather than an analysis of the underlying

dynamical processes giving rise to them.

The experimental observation of these jumps in molecular numbers has motivated sev-

eral models for the prediction and fitting of observed data, e.g. by employing a Langevin

approach (continuous) or the master equation (discrete). In the continuous case, stationary

gamma distributions for molecular concentrations are predicted along with discontinuous

trajectories for the corresponding stochastic process [9, 10]. In the discrete framework,

bursts appear in models for gene expression with two stochastic variables (so called two-

stage models with mRNA and protein), in the limit where the mRNA degradation rate is

much larger that the degradation rate for protein (a common experimental finding). In

these cases, the model predicted probability distributions are well described by a negative

binomial probability distribution [11] and simulations exhibit temporal bursting in protein

numbers [8].

In this article we use a discrete modeling framework to show that the bursting limit ac-

tually corresponds to a particular regime of a model of a switching gene between “on” and

“off” states with a one step variation in the stochastic variable corresponding to protein

numbers [12–14]. The model we develop here is an approximation to a model which is inte-
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grable in both the stationary [14, 15] and time-dependent regimes [16, 17] with symmetries

underlying the existence of analytical solution, and whose biological implications have been

explored elsewhere [18, 19].

The steady state solution for the binary model, in the limit of rapid transitions from the

“on” to the “off” state, approaches a negative binomial distribution that also describes the

bursting model. Simulation of the binary model shows apparent bursting, but examined on

a finer time scale reveals the protein numbers actually increase in a unitary fashion. This

clearly suggests that the experimental detection of bursting in gene product numbers may

be due to lack of temporal resolution in the data. Our results give clear guidelines for the

conditions on the transcription and translation processes for artifactual bursts to appear. As

such, the modeling establishes necessary conditions on the experimental temporal resolution

necessary to establish the existence of true bursting.

Gene expression is a cascade of first transcription to produce mRNA followed by trans-

lation of that mRNA to protein. Thus it makes sense to take the system state variables

to be the numbers of mRNA and protein molecules in a given cell. mRNA molecules are

produced at a rate that is dependent on the interaction between the RNA polymerase and

the promoter site. The number of mRNA molecules in the cell and their interactions with

ribosomes controls the protein synthesis. In this framework, self regulation is introduced in

the model by considering the transcription rate to be dependent on the number of protein

molecules produced. It is worth noting that specific regulation of the state of the promoter

site (active or repressed) is not taken into account on this model.

This picture for non-regulated genes has been treated in the literature previously [20].

Let m and n denote, respectively, the number of mRNA and protein molecules. The

probability of finding the system in a state (m,n), m,n ≥ 0, at time t is denoted by Pm,n(t),

while the synthesis rates for mRNA and protein are denoted by µ0
M , µ1

M and νP , and the

corresponding degradation rates are ρM and ρP . Then the evolution of the probability is

governed by a master equation for two coupled birth-death processes:

dPm,n

dt
= (µ0

M + µ1
Mn)(Pm−1,n − Pm,n)

+ νPm(Pm,n−1 − Pm,n)

+ ρM [(m+ 1)Pm+1,n − Pm,n]

+ ρP [(n+ 1)Pm,n+1 − nPm,n], (1)
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where we have assumed that the transcription rate is a function of the protein number (µ1
Mn),

indicating positive self regulation, with the requirement that µ0
M 6= 0. We have assumed a

linear dependence between the protein translation rate (νP ) and the number of available

mRNA molecules in the cytoplasm.We have been unable to construct an analytic solution

to the complete system of Eq. (1). However, exact quadrature is achieved in the limiting

case when the mRNA degradation rate is much greater than the protein degradation rate

(ρM/ρP ≫ 1) [11] so the mRNA lifetime is quite short relative to the protein lifetime.

That suggests scaling the model parameters by the protein lifetime (∼ ρ−1
P ), which results

in the dimensionless quantities

µ0 =
µ0
M

ρP
, µ1 =

µ1
M

ρP
, γ =

ρM
ρP

, ν =
νP
ρP

. (2)

The approximate Eq. (1) becomes

dP0,n

dτ
= [(n+ 1)P0,n+1 − nP0,n]

− (µ0 + µ1n)P0,n + γP1,n, (3)

dP1,n

dτ
= ν(P1,n−1 − P1,n) + [(n+ 1)P1,n+1 − nP1,n]

+ (µ0 + µ1n)P0,n − γP1,n, (4)

where we have introduced the dimensionless time τ = ρP t scale and the approximations

Pm,n ∼ 0, m ≥ 2 and (µ0+µ1n)P1,n/(γP2,n) ∼ 1, for all n. Since our simplifying assumption

implies that the mRNA lifetime is short relative to that of the protein, we would expect that

mRNA probabilities will be peaked around zero for µ0, µ1 of the same order as ρM . This

offers some justification for assuming that Eqs. (3) and (4) are valid for describing gene

expression (Supplementary information).

Eqs. (3) and (4) have the same form as the master equation for a binary gene with the

state (1, n) (or (0, n)) as the active (or repressed) state of protein synthesis with rate ν (or

zero). The “on-off” switching rate is given in terms of the mRNA degradation rate γ and

the “off-on” transition depends on the mRNA synthesis rates, µ0 (for external regulation)

or µ0 + µ1n (self regulation). To write the solutions of the model presented at the Eqs. (3)

and (4), we define constants (a, b, θ) as folows:

a =
µ0

1 + µ1
, b =

µ0 + γ

1 + µ1
, θ =

1

1 + µ1
, (5)
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where external regulation is recovered by setting θ = 1. For simplicity we consider only the

steady state solutions for Eqs. (3) and (4), P0,n, P1,n, and the probabilities for finding n

proteins inside the cell, Pn = P0,n + P1,n, namely:

P0,n =
b− a

Cb

νn

n!

(a)n
(1 + b)n

M(a + n, 1 + b+ n,−νθ), (6)

P1,n =
a

Cb

νn

n!

(1 + a)n
(1 + b)n

M(1 + a + n, 1 + b+ n,−νθ), (7)

Pn =
νn

Cn!

(a)n
(b)n

M(a+ n, b+ n,−νθ), (8)

where M(a, b, z) denotes the Kummer M function [21] and the normalization constant

C = M(a, b, ν(1 − θ)),

assures conservation of probability
∑∞

n=0
(P0,n+P1,n) = 1. Note that for external regulation,

C = M(a, b, 0) = 1.

The denominator in Eq. (5), 1+µ1, should be interpreted as the total protein removal rate

from the cytoplasm by degradation plus transcription stimulus. The constant a characterizes

the rate of spontaneous (basal) mRNA synthesis relative to the protein removal rate and

states a relation with the probability for finding one mRNA (p1), defined as
∑∞

n=0
P1,n,

namely

p1 =
a

Cb
M(a + 1, b+ 1, ν(1− θ)), (9)

and, for the external regulating gene, θ = 1, it implies

p1 =
a

b
.

Phenomenologically, b is a compound relation between the rate for a cycle of mRNA

synthesis-degradation and the protein removal rate. Its role in determining the statistics of

protein numbers is seen from the average number of protein molecules, 〈n〉 = p1ν, and the

variance relative to the average (Fano factor), σ2/〈n〉 = (〈n2〉 − 〈n〉2)/〈n〉, given by

σ2

〈n〉
= 1 + ν

a + 1

b+ 1

M(a+ 2, b+ 2, ν(1− θ))

M(a+ 1, b+ 1, ν(1− θ))

− ν
a

b

M(a + 1, b+ 1, ν(1− θ))

M(a, b, ν(1 − θ))
. (10)

For the case where θ = 1, we have

σ2

〈n〉
= 1 +

ν

b

1− a/b

1 + 1/b
. (11)
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In the limit b → +∞ (fast switching) and the parameters (a, θ, ν) are finite, Eq. (10) is

equal to one and the distribution of protein is Poissonian.

To get some intuition into this system, consider the steady state (or equilibrium) of the

Eqs. (3) and (4), when probabilities are fixed with time, but the variables (m,n) change in

time with the probabilities given by Eqs. (6), (7) and (8). b gives the average time for the

system to complete one switching cycle – e.g. from off to on and back to off again. Then

the probabilities p1 and 1− p1 are the fractions of the total switching time that the system

spends in the active and inactive states respectively.

The transition from the dynamic to the stationary regime, as noted previously [15, 17],

has an approach to equilibrium characterized by two of the time scales of the model, ρ−1
P

and (ρP + µ1
M)−1b−1. The former is the typical lifetime of the protein, whereas the second

one is related to the switching. For rapid protein degradation, compared to the switching,

the steady state is achieved after the equilibrium of on-off transitions that are slow and can

result in super Poisson stationary distributions (eventually, bi-modality occurs with each

peak related to one state of the system). On the other hand, when protein degradation

dominates, and there is fast switching, the distributions are uni-modal. In that case, the

gene regulatory mechanism (e.g. if binary or constitutive) is indistinguishable by simple

protein counting.

This reasoning suggests that bursting would occur for systems with a large value of ν

and p1 ∼ 0. Biologically, this would mean that the mRNA number is mostly zero during

an entire switching cycle. For a p1 fraction of that cycle, there will be one mRNA that is

rapidly translated (at rate ν) and thus several unitary increments in n take place during

a very short time. This will appear to be a single near-instantaneous increase in protein

number by more than one. A mechanism for a rapid increase in n from one mRNA is the

binding of several ribosomes to the mRNA.

Mathematically, the negative binomial distribution is assumed to describe a random

variable characterizing a bursting process. We can show (Supplementary information) that

the negative binomial distribution is a particular case of the probabilities of the Eq. (8) at

the limit of b, ν → ∞ with their ratio

δ =
ν

b
, (12)
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kept finite, namely:

Pn →
(a)n
n!

(

δ

1 + δθ

)n(

1 + δ(θ − 1)

1 + δθ

)a

, (13)

where (a)n = a(a+ 1) . . . (a+ n− 1), (a)0 = 1. For the self-regulating case, an approximate

negative binomial distribution occurs for θ ∼ 1, which implies weak induction of mRNA syn-

thesis by proteins, (µ1 << 1). For the externally regulated gene, θ = 1, and the probabilities

at equation above become:

Pn →
(a)n
n!

(

δ

1 + δ

)n(

1

1 + δθ

)a

, (14)

that is the negative binomial distribution [11].

We illustrate our results in FIG. 1 where the left hand column is for the external regulated

gene and the right hand column is for the self regulating case. FIG. 1.A and 1.D are

the steady state probability distributions as obtained from the expression of the binary

(Eq. 8) and negative binomial (Eq. 14) models. For the parameter values we choose,

inspection shows high agreement with the externally regulated while a slight difference

appears for the self-regulating gene. The corresponding trajectories are obtained from the

binary model, with the protein numbers shown in FIG. 1.B and 1.E. The apparent bursts

appear explicitly at protein half-life time scale. However, an expansion of the time scale

reveals that the protein synthesis is occurring one by one. Finally, the corresponding mRNA

number dynamics is shown in FIG. 1.C and 1.F. As expected, it is switching between very

short time intervals with one mRNA and long intervals with no mRNA.

Experimentally, the temporal resolution necessary for avoiding anomalous bursting de-

tection should be of the order of the average time for translation of one protein, ∼ 1/νP . In

what follows, we shall consider the system approached in Ref. [22] to show an example of a

measurement of apparent bursting. In their work, the authors monitored the expression of

the β-gal protein under the control of the lac promoter. They have detected the occurrence

of burstings in protein numbers and measured the average bursting size to be of ∼ 8 pro-

teins synthesized per burst. Our aim is to calculate the protein synthesis rate of the system

reported in Ref. [22] using the average bursting size calculated by the authors. We shall

employ our approximation at Eqs. (3) and (4) and estimate the necessary time resolution

for avoiding the measurement of apparent bursting.

We start by setting the average bursting size in terms of the rates of the Eq. (1). In

literature [11], the average bursting size is usually given by the parameter δ, of the negative
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binomial probability distribution at the Eqs. (13) and (14). Therefore, the protein synthesis

rate, νP at the Eq. (1), can be written as a function of δ as follows:

νP = δ ρP
µ0
M + ρM
ρP + µ1

M

, (15)

that is deduced by combining the Eqs. (12), (5), and (2).

To proceed calculating νP , we set µ
1
M = 0 – and assume external regulation – since the lac

promoter interacts with the Lac repressor protein that is not encoded in the lac operon genes.

Then, the expression for calculating the protein synthesis rate at the Eq. (12) is reduced

to νp = δ(µ0
M + ρM). The values of the remining unknown constants, mRNA synthesis and

degradation, are determined in terms of experimental measures.

The mRNA degradation rate of the β-gal mRNA – ρM – is taken to be ∼ 0.1 min−1 based

on data reported in Ref. [23].

We use the data provided in Ref. [22] to estimate the mRNA synthesis rate (µ0
M) at

∼ 10−3 min−1. This number is achieved dividing the average frequence of bursting of 0.16

per cell cycle by the average period of a cell cycle, 145 min (both data from Ref. [22]). The

bursts of proteins occur whenever one mRNA arrives at the cytoplasm. Therefore, we can

convert the average bursting frequence into the average mRNA synthesis rate.

Based on the values of δ, µ0
M , µ1

M , and ρM above we compute the protein synthesis rate

as νP ∼ 1 min−1. Thus, the time scale for the synthesis of one protein is ∼ 1 min or,

ln 2/νP ∼ 0.5 min in case of exponential growth of the protein population. Such time

scales are smaller than the time resolution of protein detection of 4 min reported in Ref.

[22]. Intuitively, one might expect an average of at least 4 protein synthesis during the

temporal range of the experimental resolution. The detection of an increase greater than

one in protein population should be interpreted as a bursting. However, under the conditions

we are considering in this manuscript, an experimental time resolution of ∼ 1 min would

re-establish a one-by-one protein population increase.

We also stress another aspect of experimental measurements: the sampling time. Usu-

ally, this is the time interval between two gatherings of cells from the cell culture. In the

experiments presented in Ref. [22], the sampling time is 20 s. Note that it appears to be

enough to detect the one-by-one protein increment. However, the time resolution for pro-

tein detection is obtained indirectly, from fluorescence measurements, which results a 4 min

precision. Therefore, this is not enough to detect individual proteins.
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It is worth to discuss the phenomenology of the burst like behavior reported in Ref.

[22]. Theoretically, it relates to the value of the ratio ν = νP/ρP that is a large number,

>> 1. Then, whenever an mRNA appears in the cytoplasm, a plethora of proteins is fastly

synthesized while their degradation is very slow. In a plot of the protein number versus time,

that condition appears as a fast increment in protein population, followed by a plateau, if

the experiment stands shorter than the protein half-life time.

In that case, a description of protein numbers inside the cell in terms of the negative

binomial distribution is appropriate. However, it must be emphasized that the fitting of

the measured histogram by a known probability distribution does not imply the occurrence

of the stochastic process from where the distribution is derived. The predictive power of

a model based on such approach might be lowered. In that sense, our discussion is an

increment in the capability of interpreting experimental data. That is done establishing the

time resolution necessary for experimental demonstration of bursting.

We establish two possible sceneries for the occurrence of real burst of proteins. It is

assumed experimental time resolution of the order of ∼ 1/νP and the measurement of a

greater than one instantaneous increment in protein population. The first scenery requires

the existence of only one mRNA in the cytoplasm. A possible mechanism to underlie this

effect is: multiple polipeptide chains present in cytoplasm that were translated individually

and start their functional activity simultaneously. Note that that implies a delay between

the translation process and the protein folding. In our second bursting scenery, there is

abundant fast degradating mRNA’s in the cytoplasm that can be translated synchronously

in an one-by-one fashion. Hence, multiple proteins could be synthesized simultaneously in

a time scale of the order of ∼ 1/νP .

Our results also suggest a picture of gene expression where the bursting (or burst-like)

dynamics corresponds to one among other possible behaviors. Different regimes of gene

expression are possible depending on the specific relations among the effective rates of the

reactions participating of a gene network. For example, the model at Eq. (1) has a precise

biological interpretation. Its approximation in terms of the binary model, Eqs. (3) and (4),

shows the utility of the “on” and “off” model for the analysis of gene products synthesis. In

terms of probability distributions one expect that, besides the negative binomial, the gene

products should also satisfy the probabilities based on Eqs. (6), (7) and (8).

These probabilities satisfy the Eq. (1) when the probability to find more than one mRNA
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in the cytoplasm is neglegible. In this sense, one might provide further approximations to

the solution of the Eq. (1) for neglegible probability of detecting three, four mRNA’s in the

cytoplasm, respectively, in terms of ternary, quaternary models. Different insights in the

workings of gene expression could also be provided by this kind of approach.

In this manuscript we are proposing a theoretical framework, based on the binary model

to gene expression, that generalizes the negative binomial distribution for the description of

the stochasticity in gene products number. The burst like behavior occurs in a well defined

regime, when the ratio between synthesis and degradation rates is of the order of 103 and the

synthesis of gene products very rare. As we predict from our model, measurements aiming

to detect the one-by-one increments in gene products number must have temporal resolution

of the order of the synthesis rate (1/νP ), e.g. in conditions reported in Ref. [22] that would

imply a time resolution of ∼ 10− 60 s.
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