69 research outputs found

    Mobile setup for synchrotron based in situ characterization during thermal and plasma-enhanced atomic layer deposition

    Get PDF
    We report the design of a mobile setup for synchrotron based in situ studies during atomic layer processing. The system was designed to facilitate in situ grazing incidence small angle x-ray scattering (GISAXS), x-ray fluorescence (XRF), and x-ray absorption spectroscopy measurements at synchrotron facilities. The setup consists of a compact high vacuum pump-type reactor for atomic layer deposition (ALD). The presence of a remote radio frequency plasma source enables in situ experiments during both thermal as well as plasma-enhanced ALD. The system has been successfully installed at different beam line end stations at the European Synchrotron Radiation Facility and SOLEIL synchrotrons. Examples are discussed of in situ GISAXS and XRF measurements during thermal and plasma-enhanced ALD growth of ruthenium from RuO4 (ToRuSâ„¢, Air Liquide) and H2 or H2 plasma, providing insights in the nucleation behavior of these processes

    Wide bandgap semiconductor from a hidden 2D incommensurate graphene phase

    Full text link
    Producing a usable semiconducting form of graphene has plagued the development of graphene electronics for nearly two decades. Now that new preparation methods have become available, graphene's intrinsic properties can be measured and the search for semiconducting graphene has begun to produce results. This is the case of the first graphene "buffer" layer grown on SiC(0001) presented in this work. We show, contrary to assumptions of the last forty years, that the buffer graphene layer is not commensurate with SiC. The new modulated structure we've found resolves a long standing contradiction where ab initio calculations expect a metallic buffer, while experimentally it is found to be a semiconductor. Model calculations using the new incommensurate structure show that the semiconducting π\pi-band character of the buffer comes from partially hybridized graphene incommensurate boundaries surrounding unperturbed graphene islands.Comment: 17 pages, 4 figures, 1 table, 47 references, supplemental material: 15 pages, 4 figure

    Symmetry of the Fermi surface and evolution of the electronic structure across the paramagnetic-helimagnetic transition in MnSi/Si(111)

    Full text link
    MnSi has been extensively studied for five decades, nonetheless detailed information on the Fermi surface (FS) symmetry is still lacking. This missed information prevented from a comprehensive understanding the nature of the magnetic interaction in this material. Here, by performing angle-resolved photoemission spectroscopy on high-quality MnSi films epitaxially grown on Si(111), we unveil the FS symmetry and the evolution of the electronic structure across the paramagnetic-helimagnetic transition at TC_C ∼\sim 40 K, along with the appearance of sharp quasiparticle emission below TC_C. The shape of the resulting FS is found to fulfill robust nesting effects. These effects can be at the origin of strong magnetic fluctuations not accounted for by state-of-art quasiparticle self-consistent GW approximation. From this perspective, the unforeseen quasiparticle damping detected in the paramagnetic phase and relaxing only below TC_C, along with the persistence of the d-bands splitting well above TC_C, at odds with a simple Stoner model for itinerant magnetism, open the search for exotic magnetic interactions favored by FS nesting and affecting the quasiparticles lifetime

    Elastic displacements and step interactions on metallic surfaces: GIXD and ab initio study of Au(332)

    Get PDF
    International audienceWe have studied the energetics, relaxation and interactions of steps on the Au(332) vicinal surface, using a combination of grazing incidence X-ray diffraction (GIXD), anisotropic linear elasticity (ALE) theory, and ab initio density functional theory (DFT). We find that the initial force distribution on a bulk-truncated surface, as well as the resulting pattern of atomic relaxations, can be reproduced excellently by a buried dipole elastic model. The close agreement obtained between experimental and calculated X-ray diffraction profiles allows us to precisely determine the value of the elastic dipole density at the steps. We also use these results to obtain an experimental estimate of the surface stress on an unreconstructed Au(111) facet, 2.3+/-0.4 Nm-1, and the value of the step-step elastic interaction energy: 950 +/- 150 meV.Ã…

    Surface mobility and impact of precursor dosing during atomic layer deposition of platinum : in situ monitoring of nucleation and island growth

    Get PDF
    The increasing interest in atomic layer deposition (ALD) of Pt for the controlled synthesis of supported nanoparticles for catalysis demands an in-depth understanding of the nucleation controlled growth behaviour. We present an in situ investigation of Pt ALD on planar Si substrates, with native SiO2, by means of X-ray fluorescence (XRF) and grazing incidence small-angle X-ray scattering (GISAXS), using a custom-built synchrotron-compatible high-vacuum ALD setup and focusing on the thermal Pt ALD process, comprising (methylcyclopentadienyl)trimethylplatinum (MeCpPtMe3) and O-2 gas at 300 degrees C. The evolution in key scattering features provides insights into the growth kinetics of Pt deposits from small nuclei to isolated islands and coalesced worm-like structures. An analysis approach is introduced to extract dynamic information on the average real space parameters, such as Pt cluster shape, size, and spacing. The results indicate a nucleation stage, followed by a diffusion-mediated particle growth regime that is marked by a decrease in average areal density and the formation of laterally elongated Pt clusters. Growth of the Pt nanoparticles is thus not only governed by the adsorption of Pt precursor molecules from the gas-phase and subsequent combustion of the ligands, but is largely determined by adsorption of migrating Pt species on the surface and diffusion-driven particle coalescence. Moreover, the influence of the Pt precursor dose on the particle nucleation and growth is investigated. It is found that the precursor dose influences the deposition rate (number of Pt atoms per cycle), while the particle morphology for a specific Pt loading is independent of the precursor dose used in the ALD process. Our results prove that combining in situ GISAXS and XRF provides an excellent experimental strategy to obtain new fundamental insights about the role of deposition parameters on the morphology of Pt ALD depositions. This knowledge is vital to improve control over the Pt nucleation stage and enable efficient synthesis of supported nanocatalysts

    Self-organized arrays of dislocations in thin smectic liquid crystal films

    Get PDF
    International audienceCombining optical microscopy, synchrotron X-ray diffraction and ellipsometry, we studied the internal structure of linear defect domains (oily streaks) in films of smectic liquid crystal 8CB with thickness 100-300 nm confined between air and a rubbed PVA polymer substrate which impose hybrid anchoring conditions (normal and unidirectional planar, respectively). We show how the presence or absence of dislocations control the structure of highly deformed thin smectic films. Each domain contains smectic layers curved in the shape of flattened hemicylinders to satisfy both anchoring conditions, together with grain boundaries whose size and shape are controlled by the presence of dislocation lines. A flat grain boundary normal to the interface connects neighboring hemicylinders, while a rotating grain boundary (RGB) is located near the axis of curvature of the cylinders. The RGB shape appears such that dislocation lines are concentrated at its summit close to the air interface. The smectic layers reach the polymer substrate via a transition region where the smectic layer orientation satisfies the planar anchoring condition over the entire polymer substrate and whose thickness does not depend on the one of the film. The strength of the planar anchoring appears to be high, larger than 10 −2 J/m 2 , compensating for the high energy cost of creating an additional 2D defect between an horizontal smectic layer and perpendicular ones. This 2D defect may be melted, in order to avoid the creation of a transition region structure composed of a large number of dislocations. As a result, linear defect domains can be considered as arrays of oriented defects, straight dislocations of various Burger vectors, whose location is now known and 2D nematic defects. The possibility of easy variation between the present structure with a moderate amount of dislocations and a structure with a large number of dislocations is also demonstrated

    Densite electronique du magnesium et de son hydrure MgH2 etudie par diffusion compton du rayonnement synchrotron

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Multilayer silicene: clear evidence of Ag-terminated bulk silicon

    No full text
    International audienceThe existence of silicite, a new allotrope of silicon based on a stacking of hexagonal silicene planes is one of the most discussed topic in the field of 2D materials. Using grazing incidence X-ray diffraction (GIXD), we have followed in situ the growth of Si films on Ag(111) in the low temperature growth regime (510-520 K). GIXD experiments demonstrate that Si films have a diamond-like structure, with an averaged lattice constant slightly different from bulk Si. The diffracted intensities associated with the Si films are well reproduced by the Ag/Si(111) (sqrt(3)xsqrt(3))R30° honeycomb chain model, whereas models with Ag-free Si surfaces fail to reproduce the experimental data
    • …
    corecore