87 research outputs found

    Exploring DNA Topoisomerase I Ligand Space in Search of Novel Anticancer Agents

    Get PDF
    DNA topoisomerase I (Top1) is over-expressed in tumour cells and is an important target in cancer chemotherapy. It relaxes DNA torsional strain generated during DNA processing by introducing transient single-strand breaks and allowing the broken strand to rotate around the intermediate Top1 – DNA covalent complex. This complex can be trapped by a group of anticancer agents interacting with the DNA bases and the enzyme at the cleavage site, preventing further topoisomerase activity. Here we have identified novel Top1 inhibitors as potential anticancer agents by using a combination of structure- and ligand-based molecular modelling methods. Pharmacophore models have been developed based on the molecular characteristics of derivatives of the alkaloid camptothecin (CPT), which represent potent antitumour agents and the main group of Top1 inhibitors. The models generated were used for in silico screening of the National Cancer Institute (NCI, USA) compound database, leading to the identification of a set of structurally diverse molecules. The strategy is validated by the observation that amongst these molecules are several known Top1 inhibitors and agents cytotoxic against human tumour cell lines. The potential of the untested hits to inhibit Top1 activity was further evaluated by docking into the binding site of a Top1 – DNA complex, resulting in a selection of 10 compounds for biological testing. Limited by the compound availability, 7 compounds have been tested in vitro for their Top1 inhibitory activity, 5 of which display mild to moderate Top1 inhibition. A further compound, found by similarity search to the active compounds, also shows mild activity. Although the tested compounds display only low in vitro antitumour activity, our approach has been successful in the identification of structurally novel Top1 inhibitors worthy of further investigation as potential anticancer agents

    X-ray structures of checkpoint kinase 2 in complex with inhibitors that target its gatekeeper-dependent hydrophobic pocket

    Get PDF
    AbstractThe serine/threonine checkpoint kinase 2 (Chk2) is an attractive molecular target for the development of small molecule inhibitors to treat cancer. Here, we report the rational design of Chk2 inhibitors that target the gatekeeper-dependent hydrophobic pocket located behind the adenine-binding region of the ATP-binding site. These compounds exhibit IC50 values in the low nanomolar range and are highly selective for Chk2 over Chk1. X-ray crystallography was used to determine the structures of the inhibitors in complex with the catalytic kinase domain of Chk2 to verify their modes of binding

    4-Pregnen-21-ol-3,20-dione-21-(4-bromobenzenesulfonate) (NSC 88915) and related novel steroid derivatives as tyrosyl-DNA phosphodiesterase (Tdp1) inhibitors

    Get PDF
    Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an enzyme that catalyzes the hydrolysis of 3'-phosphotyrosyl bonds. Such linkages form in vivo when topoisomerase I (Top1) processes DNA. For this reason, Tdp1 has been implicated in the repair of irreversible Top1-DNA covalent complexes. Tdp1 inhibitors have been regarded as potential therapeutics in combination with Top1 inhibitors, such as the camptothecin derivatives, topotecan and irinotecan, which are used to treat human cancers. Using a novel high-throughput screening assay, we have identified the C21-substituted progesterone derivative, NSC 88915 (1), as a potential Tdp1 inhibitor. Secondary screening and cross-reactivity studies with related DNA processing enzymes confirmed that compound 1 possesses specific Tdp1 inhibitory activity. Deconstruction of compound 1 into discrete functional groups reveals that both components are required for inhibition of Tdp1 activity. Moreover, the synthesis of analogues of compound 1 has provided insight into the structural requirements for the inhibition of Tdp1. Surface plasmon resonance shows that compound 1 binds to Tdp1, whereas an inactive analogue fails to interact with the enzyme. Based on molecular docking and mechanistic studies, we propose that these compounds are competitive inhibitors, which mimics the oligonucleotide-peptide Tdp1 substrate. These steroid derivatives represent a novel chemotype and provide a new scaffold for developing small molecule inhibitors of Tdp1

    Functional Categories Associated with Clusters of Genes That Are Co-Expressed across the NCI-60 Cancer Cell Lines

    Get PDF
    The NCI-60 is a panel of 60 diverse human cancer cell lines used by the U.S. National Cancer Institute to screen compounds for anticancer activity. In the current study, gene expression levels from five platforms were integrated to yield a single composite transcriptome profile. The comprehensive and reliable nature of that dataset allows us to study gene co-expression across cancer cell lines.Hierarchical clustering revealed numerous clusters of genes in which the genes co-vary across the NCI-60. To determine functional categorization associated with each cluster, we used the Gene Ontology (GO) Consortium database and the GoMiner tool. GO maps genes to hierarchically-organized biological process categories. GoMiner can leverage GO to perform ontological analyses of gene expression studies, generating a list of significant functional categories.GoMiner analysis revealed many clusters of coregulated genes that are associated with functional groupings of GO biological process categories. Notably, those categories arising from coherent co-expression groupings reflect cancer-related themes such as adhesion, cell migration, RNA splicing, immune response and signal transduction. Thus, these clusters demonstrate transcriptional coregulation of functionally-related genes

    RedundancyMiner: De-replication of redundant GO categories in microarray and proteomics analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Gene Ontology (GO) Consortium organizes genes into hierarchical categories based on biological process, molecular function and subcellular localization. Tools such as GoMiner can leverage GO to perform ontological analysis of microarray and proteomics studies, typically generating a list of significant functional categories. Two or more of the categories are often redundant, in the sense that identical or nearly-identical sets of genes map to the categories. The redundancy might typically inflate the report of significant categories by a factor of three-fold, create an illusion of an overly long list of significant categories, and obscure the relevant biological interpretation.</p> <p>Results</p> <p>We now introduce a new resource, RedundancyMiner, that de-replicates the redundant and nearly-redundant GO categories that had been determined by first running GoMiner. The main algorithm of RedundancyMiner, MultiClust, performs a novel form of cluster analysis in which a GO category might belong to several category clusters. Each category cluster follows a "complete linkage" paradigm. The metric is a similarity measure that captures the overlap in gene mapping between pairs of categories.</p> <p>Conclusions</p> <p>RedundancyMiner effectively eliminated redundancies from a set of GO categories. For illustration, we have applied it to the clarification of the results arising from two current studies: (1) assessment of the gene expression profiles obtained by laser capture microdissection (LCM) of serial cryosections of the retina at the site of final optic fissure closure in the mouse embryos at specific embryonic stages, and (2) analysis of a conceptual data set obtained by examining a list of genes deemed to be "kinetochore" genes.</p

    The Hydrophobic Core of Twin-Arginine Signal Sequences Orchestrates Specific Binding to Tat-Pathway Related Chaperones

    Get PDF
    Redox enzyme maturation proteins (REMPs) bind pre-proteins destined for translocation across the bacterial cytoplasmic membrane via the twin-arginine translocation system and enable the enzymatic incorporation of complex cofactors. Most REMPs recognize one specific pre-protein. The recognition site usually resides in the N-terminal signal sequence. REMP binding protects signal peptides against degradation by proteases. REMPs are also believed to prevent binding of immature pre-proteins to the translocon. The main aim of this work was to better understand the interaction between REMPs and substrate signal sequences. Two REMPs were investigated: DmsD (specific for dimethylsulfoxide reductase, DmsA) and TorD (specific for trimethylamine N-oxide reductase, TorA). Green fluorescent protein (GFP) was genetically fused behind the signal sequences of TorA and DmsA. This ensures native behavior of the respective signal sequence and excludes any effects mediated by the mature domain of the pre-protein. Surface plasmon resonance analysis revealed that these chimeric pre-proteins specifically bind to the cognate REMP. Furthermore, the region of the signal sequence that is responsible for specific binding to the corresponding REMP was identified by creating region-swapped chimeric signal sequences, containing parts of both the TorA and DmsA signal sequences. Surprisingly, specificity is not encoded in the highly variable positively charged N-terminal region of the signal sequence, but in the more similar hydrophobic C-terminal parts. Interestingly, binding of DmsD to its model substrate reduced membrane binding of the pre-protein. This property could link REMP-signal peptide binding to its reported proofreading function

    Mass Homozygotes Accumulation in the NCI-60 Cancer Cell Lines As Compared to HapMap Trios, and Relation to Fragile Site Location

    Get PDF
    Runs of homozygosity (ROH) represents extended length of homozygotes on a long genomic distance. In oncology, it is known as loss of heterozygosity (LOH) if identified exclusively in cancer cell rather than in matched control cell. Studies have identified several genomic regions which show consistent ROH in different kinds of carcinoma. To query whether this consistency can be observed on broader spectrum, both in more cancer types and in wider genomic regions, we investigated ROH patterns in the National Cancer Institute 60 cancer cell line panel (NCI-60) and HapMap Caucasian healthy trio families. Using results from Affymetrix 500 K SNP arrays, we report a genome wide significant association of ROH regions between the NCI-60 and HapMap samples, with much a higher level of ROH (11 fold) in the cancer cell lines. Analysis shows that more severe ROH found in cancer cells appears to be the extension of existing ROH in healthy state. In the HapMap trios, the adult subgroup had a slightly but significantly higher level (1.02 fold) of ROH than did the young subgroup. For several ROH regions we observed the co-occurrence of fragile sites (FRAs). However, FRA on the genome wide level does not show a clear relationship with ROH regions

    Specificity of LTR DNA recognition by a peptide mimicking the HIV-1 integrase α4 helix

    Get PDF
    HIV-1 integrase integrates retroviral DNA through 3′-processing and strand transfer reactions in the presence of a divalent cation (Mg2+ or Mn2+). The α4 helix exposed at the catalytic core surface is essential to the specific recognition of viral DNA. To define group determinants of recognition, we used a model composed of a peptide analogue of the α4 helix, oligonucleotides mimicking processed and unprocessed U5 LTR end and 5 mM Mg2+. Circular dichroism, fluorescence and NMR experiments confirmed the implication of the α4 helix polar/charged face in specific and non-specific bindings to LTR ends. The specific binding requires unprocessed LTR ends—i.e. an unaltered 3′-processing site CA↓GT3′—and is reinforced by Mg2+ (Kd decreases from 2 to 0.8 nM). The latter likely interacts with the ApG and GpT3′ steps of the 3′-processing site. With deletion of GT3′, only persists non-specific binding (Kd of 100 μM). Proton chemical shift deviations showed that specific binding need conserved amino acids in the α4 helix and conserved nucleotide bases and backbone groups at LTR ends. We suggest a conserved recognition mechanism based on both direct and indirect readout and which is subject to evolutionary pressure
    corecore