13 research outputs found

    Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington’s disease

    Get PDF
    Huntington’s disease (HD) is a polyglutamine (polyQ) disease caused by aberrant expansion of the polyQ tract in Huntingtin (HTT). While motor impairment mediated by polyQ-expanded HTT has been intensively studied, molecular mechanisms for nonmotor symptoms in HD, such as psychiatric manifestations, remain elusive. Here we have demonstrated that HTT forms a ternary protein complex with the scaffolding protein DISC1 and cAMP-degrading phosphodiesterase 4 (PDE4) to regulate PDE4 activity. We observed pathological cross-seeding between DISC1 and mutant HTT aggregates in the brains of HD patients as well as in a murine model that recapitulates the polyQ pathology of HD (R6/2 mice). In R6/2 mice, consequent reductions in soluble DISC1 led to dysregulation of DISC1-PDE4 complexes, aberrantly increasing the activity of PDE4. Importantly, exogenous expression of a modified DISC1, which binds to PDE4 but not mutant HTT, normalized PDE4 activity and ameliorated anhedonia in the R6/2 mice. We propose that cross-seeding of mutant HTT and DISC1 and the resultant changes in PDE4 activity may underlie the pathology of a specific subset of mental manifestations of HD, which may provide an insight into molecular signaling in mental illness in general

    TGF-beta regulates the expression of transcription factor KLF6 and its splice variants and promotes co-operative transactivation of common target genes through a Smad3-Sp1-KLF6 interaction

    No full text
    13 p.-6 fig.-3 fig. supl.KLF6 (Krüppel-like factor 6) is a ranscription factor and tumour suppressor with a growing range of biological activities and transcriptional targets. Among these, KLF6 suppresses growth through transactivation of TGF-β1 (transforming growth factor-β1). KLF6 can be alternatively spliced, generating lower-molecular-mass isoforms that antagonize the full-length WT (wild-type) protein and promote growth. A key target gene of full-length KLF6 is endoglin, which is induced in vascular injury. Endoglin, a homodimeric cell membrane glycoprotein and TGF-β auxiliary receptor, has a pro-angiogenic role in endothelial cells and is also involved in malignant progression. The aim of the present work was to explore the effect of TGF-β on KLF6 expression and splicing, and to define the contribution of TGF-β on promoters regulated by co-operation between KLF6 and Sp1 (specificity protein 1). Using co-transfection, co-immunoprecipitation and fluorescence resonance energy transfer, our data demonstrate that KLF6 co-operates with Sp1 in transcriptionally regulating KLF6-responsive genes and that this co-operation is further enhanced by TGF-β1 through at least two mechanisms. First, in specific cell types, TGF-β1 may decrease KLF6 alternative splicing, resulting in a net increase in full-length, growth-suppressive KLF6 activity. Secondly, KLF6–Sp1 co-operation is further enhanced by the TGF-β–Smad (similar to mothers against decapentaplegic) pathway via the likely formation of a tripartite KLF6–Sp1–Smad3 complex in which KLF6 interacts indirectly with Smad3 through Sp1, which may serve as a bridging molecule to co-ordinate this interaction. These findings unveil a finely tuned network of interactions between KLF6, Sp1 and TGF-β to regulate target genesPeer reviewe

    Molecular basis for diversification of yeast prion strain conformation

    No full text
    Self-propagating β-sheet–rich fibrillar protein aggregates, amyloidfibers, are often associated with cellular dysfunction and disease.Distinct amyloid conformations dictate different physiological consequences,such as cellular toxicity. However, the origin of the diversityof amyloid conformation remains unknown. Here, we suggest thataltered conformational equilibrium in natively disordered monomericproteins leads to the adaptation of alternate amyloid conformationsthat have different phenotypic effects. We performed acomprehensive high-resolution structural analysis of Sup35NM, anN-terminal fragment of the Sup35 yeast prion protein, and foundthat monomeric Sup35NM harbored latent local compact structuresdespite its overall disordered conformation. When the hidden localmicrostructures were relaxed by genetic mutations or solvent conditions,Sup35NM adopted a strikingly different amyloid conformation,which redirected chaperone-mediated fiber fragmentation and modulatedprion strain phenotypes. Thus, dynamic conformational fluctuationsin natively disordered monomeric proteins represent aposttranslational mechanism for diversification of aggregate structuresand cellular phenotypes

    α2,6-Sialic Acid on Platelet Endothelial Cell Adhesion Molecule (PECAM) Regulates Its Homophilic Interactions and Downstream Antiapoptotic Signaling*

    No full text
    Antiangiogenesis therapies are now part of the standard repertoire of cancer therapies, but the mechanisms for the proliferation and survival of endothelial cells are not fully understood. Although endothelial cells are covered with a glycocalyx, little is known about how endothelial glycosylation regulates endothelial functions. Here, we show that α2,6-sialic acid is necessary for the cell-surface residency of platelet endothelial cell adhesion molecule (PECAM), a member of the immunoglobulin superfamily that plays multiple roles in cell adhesion, mechanical stress sensing, antiapoptosis, and angiogenesis. As a possible underlying mechanism, we found that the homophilic interactions of PECAM in endothelial cells were dependent on α2,6-sialic acid. We also found that the absence of α2,6-sialic acid down-regulated the tyrosine phosphorylation of PECAM and recruitment of Src homology 2 domain-containing protein-tyrosine phosphatase 2 and rendered the cells more prone to mitochondrion-dependent apoptosis, as evaluated using PECAM- deficient endothelial cells. The present findings open up a new possibility that modulation of glycosylation could be one of the promising strategies for regulating angiogenesis
    corecore