42 research outputs found

    Facile one-pot synthesis of diaryliodonium salts from arenes and aryl iodides with oxone

    Get PDF
    A straightforward synthesis of diaryliodonium salts is achieved by using Oxone as the stoichiometric oxidant. Slow addition is the key to obtaining good yields and purities of the reaction products, which are highly useful reagents in many different areas of organic synthesis

    Preparation and X-ray structure of 2-iodoxybenzenesulfonic acid (IBS) - a powerful hypervalent iodine(V) oxidant

    Get PDF
    The selective preparation of 2-iodoxybenzenesulfonic acid (IBS, as potassium or sodium salts) by oxidation of sodium 2-iodobenzenesulfonate with Oxone or sodium periodate in water is reported. The single crystal X-ray diffraction analysis reveals a complex polymeric structure consisting of three units of IBS as potassium salt and one unit of 2-iodoxybenzenesulfonic acid linked together by relatively strong I=O···I intermolecular interactions. Furthermore, a new method for the preparation of the reduced form of IBS, 2-iodosylbenzenesulfonic acid, by using periodic acid as an oxidant, has been developed. It has been demonstrated that the oxidation of free 2-iodobenzenesulfonic acid under acidic conditions affords an iodine(III) heterocycle (2-iodosylbenzenesulfonic acid), while the oxidation of sodium 2-iodobenzenesulfonate in neutral aqueous solution gives the iodine(V) products

    2-Iodoxybenzoic acid ditriflate: the most powerful hypervalent iodine(v) oxidant

    Get PDF
    A ditriflate derivative of 2-iodoxybenzoic acid (IBX) was prepared by the reaction of IBX with trifluoromethanesulfonic acid and characterized by single crystal X-ray crystallography. IBX-ditriflate is the most powerful oxidant in a series of structurally similar IBX derivatives which is best illustrated by its ability to readily oxidize hydrocarbons and the oxidation resistant polyfluoroalcohols

    Can Plasmon Change Reaction Path? : Decomposition of Unsymmetrical Iodonium Salts as an Organic Probe

    Get PDF
    Plasmon-assisted transformations of organic compounds represent a novel opportunity for conversion of light to chemical energy at room temperature. However, the mechanistic insights of interaction between plasmon energy and organic molecules is still under debate. Herein, we proposed a comprehensive study of the plasmon-assisted reaction mechanism using unsymmetric iodonium salts (ISs) as an organic probe. The experimental and theoretical analysis allow us to exclude the possible thermal effect or hot electron transfer. We found that plasmon interaction with unsymmetrical ISs led to the intramolecular excitation of electron followed by the regioselective cleavage of C–I bond with the formation of electron-rich radical species, which cannot be explained by the hot electron excitation or thermal effects. The high regioselectivity is explained by the direct excitation of electron to LUMO with the formation of a dissociative excited state according to quantum-chemical modeling, which provides novel opportunities for the fine control of reactivity using plasmon energy.Peer reviewe

    Zwitterionic iodonium species afford halogen bond-based porous organic frameworks

    Get PDF
    Porous architectures characterized by parallel channels arranged in honeycomb or rectangular patterns are identified in two polymorphic crystals of a zwitterionic 4-(aryliodonio)-benzenesulfonate. The channels are filled with disordered water molecules which can be reversibly removed on heating. Consistent with the remarkable strength and directionality of the halogen bonds (XBs) driving the crystal packing formation, the porous structure is stable and fully preserved on almost quantitative removal and readsorption of water. The porous systems described here are the first reported cases of one-component 3D organic frameworks whose assembly is driven by XB only (XOFs). These systems are a proof of concept for the ability of zwitterionic aryliodonium tectons in affording robust one-component 3D XOFs. The high directionality and strength of the XBs formed by these zwitterions and the geometrical constraints resulting from the tendency of their hypervalent iodine atoms to act as bidentate XB donors might be key factors in determining this ability

    Evolution of the Reagent for Iodination and Iodonitration. Optimization of the Synthesis Conditions in the Framework of Green Chemistry

    Get PDF
    Показана эволюция реагента Тронова-Новикова, проанализированы результаты работы нашей группы под руководством профессора М. С. Юсубова за последние двадцать лет в области йодирования и йоднитрования. Показаны новые возможности твердофазного реагента на основе йода (йодида калия) и (или) нитратов. Изучены химические свойства твердофазных реагентов и оптимизированы условия проведения реакций, которые позволяют проводить целенаправленный синтез продуктов моно- или дийодирования, йоднитрования, нитрования и гетероциклизации. Показано, что при йодировании активированных и умеренно активированных ароматических субстратов и фенилацетилена в условиях «solvent-free » с более высокими выходами получены продукты, аналогичные продуктам в синтезе с использованием растворителя. Предложены возможные окислительно-восстановительные схемы образования промежуточных частиц дийодосеребра (I) нитрата и нитрилйодида в реакциях без растворителя. Полученные теоретические и экспериментальные данные подтверждают возможность распада нитрилйодида по гомо- и гетеролитическому пути в зависимости от природы субстрата не только в синтезе с участием растворителя, но и в условиях «solvent-free »The evolution of the Tronov-Novikov reagent is shown. Scientific investigations of our research group under the leading of professor M. S. Usubov in the field of iodination and iodonitration have been analyzed. New possibilities of a solid-phase reagent based on iodine (potassium iodide) and (or) nitrates are represented. We have studied chemical properties of the solid-phase reagents and optimized conditions of reactions, which allow prediction the synthesis of products of mono- or diiodination, iodonitration, nitration, and heterocyclization. It has been found that iodination of activated and mild activated aromatic substrates and phenylacetylene under solvent-free conditions results with products similar to those obtained in the presence of solvent. However, the solvent-free procedure offers significant advantages such as higher yields, short reaction times with mild reaction conditions. Possible redox schemes were proposed for the formation of potential intermediate particles diiodosilver(I) nitrate and nitrile iodide in solvent-free reactions. Obtained theoretical and experimental data confirm the possibility of the homo- and heterolytic pathways decomposition of nitrile iodide, depending on the nature of the substrate, in the synthesis with a solvent, as well as under “solvent-free” condition

    Fully-sulfonated hydrated UiO66 as efficient catalyst for ethyl levulinate production by esterification

    No full text
    Partially and fully sulfonated UiO66 derivatives, along with the non-functionalized MOF, were synthetized by one-step solvothermal synthesis. Structural, acid and porous properties were investigated before and after dehydration and thermal activation processes. Hydrated, dehydrated and thermally activated materials were screened as a heterogeneous catalyst towards the esterification of levulinic acid with ethanol in order to determine the effects of the exposed acid functionalities amount and hydration. The hydrated fully sulfonated UiO66 presented the highest activity and resulted to be more efficient than commercial Amberlyst 15. It also demonstrated high stability and recyclability in consecutive reaction runs

    Hypoiodite-Mediated Catalytic Cyclopropanation of Alkenes with Malononitrile

    No full text
    An efficient synthetic procedure for dicyano-cyclopropanation of alkenes using catalytic amounts of molecular iodine as a precatalyst and tert-butyl hydroperoxide (TBHP) as a terminal oxidant under mild conditions has been developed. This catalytic reaction works especially well for the aryl-substituted double bond affording products of cyclopropanation in high yields. A catalytic cycle based on the generated in situ hypoiodite species has been proposed

    Tunable Metal–Organic Frameworks for Heat Transformation Applications

    No full text
    Metal–Organic Frameworks (MOFs) are a subclass of porous materials that have unique properties, such as varieties of structures from different metals and organic linkers and tunable porosity from a structure or framework design. Moreover, modification/functionalization of the material structure could optimize the material properties and demonstrate high potential for a selected application. MOF materials exhibit exceptional properties that make these materials widely applicable in energy storage and heat transformation applications. This review aims to give a broad overview of MOFs and their development as adsorbent materials with potential for heat transformation applications. We have briefly overviewed current explorations, developments, and the potential of metal–organic frameworks (MOFs), especially the tuning of the porosity and the hydrophobic/hydrophilic design required for this specific application. These materials applied as adsorbents are promising in thermal-driven adsorption for heat transformation using water as a working fluid and related applications
    corecore