87 research outputs found

    Robustness: a new SLIP model based criterion for gait transitions in bipedal locomotion

    Get PDF
    Bipedal locomotion is a phenomenon that still eludes a fundamental and concise mathematical understanding. Conceptual models that capture some relevant aspects of the process exist but their full explanatory power is not yet exhausted. In the current study, we introduce the robustness criterion which defines the conditions for stable locomotion when steps are taken with imprecise angle of attack. Intuitively, the necessity of a higher precision indicates the difficulty to continue moving with a given gait. We show that the spring-loaded inverted pendulum model, under the robustness criterion, is consistent with previously reported findings on attentional demand during human locomotion. This criterion allows transitions between running and walking, many of which conserve forward speed. Simulations of transitions predict Froude numbers below the ones observed in humans, nevertheless the model satisfactorily reproduces several biomechanical indicators such as hip excursion, gait duty factor and vertical ground reaction force profiles. Furthermore, we identify reversible robust walk-run transitions, which allow the system to execute a robust version of the hopping gait. These findings foster the spring-loaded inverted pendulum model as the unifying framework for the understanding of bipedal locomotion.Comment: unpublished, in preparatio

    Tapping into rhythm generation circuitry in humans during simulated weightlessness conditions

    Get PDF
    An ability to produce rhythmic activity is ubiquitous for locomotor pattern generation and modulation. The role that the rhythmogenesis capacity of the spinal cord plays in injured populations has become an area of interest and systematic investigation among researchers in recent years, despite its importance being long recognized by neurophysiologists and clinicians. Given that each individual interneuron, as a rule, receives a broad convergence of various supraspinal and sensory inputs and may contribute to a vast repertoire of motor actions, the importance of assessing the functional state of the spinal locomotor circuits becomes increasingly evident. Air-stepping can be used as a unique and important model for investigating human rhythmogenesis since its manifestation is largely facilitated by a reduction of external resistance. This article aims to provide a review on current issues related to the ‘locomotor’ state and interactions between spinal and supraspinal influences on the central pattern generator circuitry in humans, which may be important for developing gait rehabilitation strategies in individuals with spinal cord and brain injuries

    Efficiency of Lift Production in Flapping and Gliding Flight of Swifts

    Get PDF
    Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord) and/or twist from root to tip (reducing local angle of attack). We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag

    Neck muscle vibration makes walking humans accelerate in the direction of gaze

    No full text
    We studied the effect of the continuous vibration of symmetrical dorsal neck muscles in seven normal subjects during (a) quiet standing, (b) stepping in place movements and (c) walking on the treadmill. The experiments were performed in a darkened room and the subjects were given the instruction not to resist the applied perturbation. In one condition the velocity of the treadmill was controlled by feedback from the subject's current position. Head, trunk and leg motion were recorded at 100 Hz.In normal standing, neck vibration elicited a prominent forward body sway. During stepping in place, neck vibration produced an involuntary forward stepping at about 0.3 m s−1 without modifying the stepping frequency. If the head was turned horizontally 45 and 90 deg to the right or to the left, neck muscle vibration caused stepping approximately in the direction of the head naso-occipital axis. For lateral eye deviations, the direction of stepping was roughly aligned with gaze direction.In treadmill locomotion, neck vibration produced an involuntary step-like increase of walking speed (by 0.1–0.6 m s−1), independent of the initial walking speed. During backward locomotion, the walking speed tended to decrease during neck vibration.Thus, continuous neck vibration evokes changes in the postural reference during quiet standing and in the walking speed during locomotion. The results suggest that the proprioceptive input from the neck is integrated in the control of human posture and locomotion and is processed in the context of a viewer-centred reference frame

    Development of independent walking in toddlers

    No full text
    Surprisingly, despite millions of years of bipedal walking evolution, the gravity-related pendulum mechanism of walking does not seem to be implemented at the onset of independent walking, requiring each toddler to develop it. We discuss the precursor of the mature locomotor pattern in infants as an optimal starting point strategy for gait maturation

    Control of foot trajectory in walking toddlers: adaptation to load changes

    No full text
    On earth, body weight is an inherent constraint, and accordingly, load-regulating mechanisms play an important role in terrestrial locomotion. How do toddlers deal with the effects of their full body weight when faced with the task of independent upright locomotion for the first time? Here we studied the effect of load variation on walking in 12 toddlers during their first unsupported steps, 15 older children (1.3-5 yr), and 10 adults. To simulate various levels of body weight, an experimenter held the trunk of the subject with both hands and supplied an approximately constant vertical force during stepping on a force platform. During unsupported stepping, the shape of the foot path in toddlers (typically single-peak toe trajectory) was different from that of adults and older children (double-peak trajectory). In contrast to adults and older children, who showed only limited changes in kinematic coordination, the "reduced-gravity" condition considerably affected the shape of the foot path in toddlers: they tended to make a high lift and forward foot overshoot at the end of swing. In addition, stepping at high levels of body unloading was characterized by a significant change in the initial direction of foot motion during early swing. Intermediate walkers (1.5-5 mo after walking onset) showed only partial improvement in foot trajectory characteristics. The results suggest that, at the onset of walking, changes in vertical body loads are not compensated accurately by the kinematic controllers; compensation necessitates a few months of independent walking experience

    Are we ready to move beyond the reductionist approach of classical synergy control?: Comment on" Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    No full text
    Lacquaniti F, Ivanenko YP, Zago M. Are we ready to move beyond the reductionist approach of classical synergy control?: Comment on" Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al. Physics of Life Reviews. 2016;17:38

    Human Locomotion under Reduced Gravity Conditions: Biomechanical and Neurophysiological Considerations

    No full text
    Reduced gravity offers unique opportunities to study motor behavior. This paper aims at providing a review on current issues of the known tools and techniques used for hypogravity simulation and their effects on human locomotion. Walking and running rely on the limb oscillatory mechanics, and one way to change its dynamic properties is to modify the level of gravity. Gravity has a strong effect on the optimal rate of limb oscillations, optimal walking speed, and muscle activity patterns, and gait transitions occur smoothly and at slower speeds at lower gravity levels. Altered center of mass movements and interplay between stance and swing leg dynamics may challenge new forms of locomotion in a heterogravity environment. Furthermore, observations in the lack of gravity effects help to reveal the intrinsic properties of locomotor pattern generators and make evident facilitation of nonvoluntary limb stepping. In view of that, space neurosciences research has participated in the development of new technologies that can be used as an effective tool for gait rehabilitation

    Support Stability Influences Postural Responses to Muscle Vibrations in Humans

    Get PDF
    Abstract We studied the effect of support stability on postural responses to the vibration of Achilles tendons and of neck dorsal muscles in healthy humans. For this purpose we compared postural responses on a rigid floor and on 6 cm high rocking supports (see-saws) of different curvatures (different radii: 30, 60 and 120 cm). The subject stood with eyes closed, the centre of the feet coincided with the centre of the see-saw. We recorded platform tilt, horizontal displacements of the upper body, ankle joint angle and activity of ankle joint muscles. On the rocking platform subjects maintained balance in a sagittal direction by making see-saw rotations placing the support under the body's centre of gravity. Equilibrium maintenance requires that the torque in the ankle joint increases during forward body displacements, as on the rigid floor, and be accompanied by a plantar flexion (not by a dorsiflexion) in the ankle joint. The directional dependence of vibration-induced reactions on the see-saw was the same (relative to space) as on the rigid floor: backward body displacement during Achilles tendon vibration and forward body displacement during neck muscle vibration. A decrease of support stability (with a decrease of the radius from 120 to 30 cm) diminished significantly the effect of Achilles tendon vibration and to a lesser extent the effect of neck muscle vibration. In contrast, the increase of platform stability by hand contact with a stable external object gave rise to prominent body sway in response to Achilles tendon vibration. Neck muscle vibration on the movable support provoked a quick initial forward body sway. This initial quick response was absent during vibration of the Achilles tendons. We conclude that postural responses to muscle vibration reflect the participation of different muscles in posture control and depend on the support properties. Support instability changes the role of proprioceptive information and the state of the system of equilibrium maintenance
    • …
    corecore