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An ability to produce rhythmic activity is ubiquitous for locomotor pattern generation
and modulation. The role that the rhythmogenesis capacity of the spinal cord plays
in injured populations has become an area of interest and systematic investigation
among researchers in recent years, despite its importance being long recognized by
neurophysiologists and clinicians. Given that each individual interneuron, as a rule, receives
a broad convergence of various supraspinal and sensory inputs and may contribute to
a vast repertoire of motor actions, the importance of assessing the functional state of
the spinal locomotor circuits becomes increasingly evident. Air-stepping can be used
as a unique and important model for investigating human rhythmogenesis since its
manifestation is largely facilitated by a reduction of external resistance. This article aims
to provide a review on current issues related to the “locomotor” state and interactions
between spinal and supraspinal influences on the central pattern generator (CPG) circuitry
in humans, which may be important for developing gait rehabilitation strategies in
individuals with spinal cord and brain injuries.
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INTRODUCTION
It is now largely accepted that the neural circuitry controlling
locomotion involves a central pattern generator (CPG; Grillner,
1981). CPG functioning depends on supraspinal inputs and
sensory feedback (Shik, 1997; Orlovsky et al., 1999; Pearson,
2004; Jordan et al., 2008). Most CPGs are quiescent under resting
condition and become recruited by supraspinal pathways with
command function (Grillner, 2006). Sensory activity establishes
the timing of major phase transitions and contributes to the
production of motoneuronal drive (Nielsen and Sinkjaer, 2002;
Pearson, 2004), and may also trigger a stepping-like output
(Sherrington, 1910; Gurfinkel et al., 1998; Gerasimenko et al.,
2010).

The capacity of the mammalian lumbosacral spinal cord to
generate rhythmic activity in the absence of input from the
brain is firmly established in animal models (Sherrington, 1910;
Graham Brown, 1912; Grillner, 1981) and there is indirect
evidence that CPGs may also be a feature of the human spinal
cord (Bussel et al., 1996; Minassian et al., 2004; Shapkova, 2004;
Dominici et al., 2011; Hubli and Dietz, 2013; Ivanenko et al.,
2013). The available evidence suggests that many locomotor-
related movements that humans perform routinely (walking,
running, cycling, swimming, crawling, backward walking, etc.)
use similar rhythm circuitry but additionally require specialized
control circuits (Zehr, 2005; Patrick et al., 2009; Hoogkamer

et al., 2014). In fact, the capacity of neural circuits to generate
rhythmic activity represents the common core for various
locomotor tasks (Zehr, 2005). The aim of this article is to
provide a review on current issues related to the excitability
of spinal CPG circuitry in humans. Under normal conditions,
it is sometimes difficult to investigate impairments in the
CPG functioning due to interference with the ongoing task of
body weight and balance control (including intense feedback).
Therefore, one might examine the rhythmogenesis capacity of
spinal circuitry in conditions not-complicated by these two
factors.

Body weight support systems coupled with robotic devices
or pharmacologic treatments are now often used in the
rehabilitation practice to assist locomotor recovery in individuals
with neuromotor disorders (Dietz, 2009; Sale et al., 2012; Hubli
and Dietz, 2013; Valentin-Gudiol et al., 2013; Meyns et al., 2014;
Moraru and Onose, 2014). There is still limited evidence of
the efficacy of treadmill interventions with body weight support
in some injured populations due to the complex nature of the
control of locomotion, compensatory strategies, and plasticity
of neuronal networks (Grasso et al., 2004; Picelli et al., 2013;
Valentin-Gudiol et al., 2013; Swinnen et al., 2014; Sylos-Labini
et al., 2014b). We will not review here any detailed analysis of
clinical outcomes for ambulation when using locomotor training
with body weight support systems and refer to other reviews (e.g.,
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FIGURE 1 | Eliciting non-voluntary limb stepping movements in
simulated weightlessness (gravity neutral) conditions. (A) examples
of non-voluntary rhythmic movements of the suspended legs induced by
quadriceps (Q) muscle vibration and electrical stimulation (ES) of sural
and peroneal nerves in one representative subject from the study of
Selionov et al. (2009). An upward deflection of traces denotes flexion in
the hip and knee joint angles and dorsiflexion in the ankle joint. Note the

absence of ankle joint rotations during evoked air-stepping. (B) An
example of evoked rhythmic leg movements during hand walking in one
subject from the study of Sylos-Labini et al. (2014a). RF, rectus femoris,
BF, biceps femoris, TA, tibialis anterior, LG, lateral gastrocnemius, FCU,
flexor carpi ulnaris, BIC, biceps brachii, DELTa, anterior deltoid, ST, and
semitendinosus. Hand and foot denote anterior-posterior displacements
of the left hand and foot.

Wirz et al., 2005; Sale et al., 2012; Valentin-Gudiol et al., 2013;
Scivoletto et al., 2014). The main focus here is to give emphasis to
a facilitatory effect of simulated weightlessness on rhythmogenesis
and its potential for assessing the state of the CPG circuits and
for gait recovery after spinal cord injury and other neuromotor
disorders.

LOCOMOTOR “STATE” OF THE SPINAL CIRCUITY
Historically, Goltz and Freusberg (1874) were the first to report
spontaneous air-stepping of the hindlimbs of the spinal dog
before voiding the distended bladder, presumably due to some
excitatory state of the spinal circuitry. In decerebrated animals
exhibiting spontaneous fluctuations in their level of rigidity,
rhythmic movements can be evoked by peripheral stimulation,
provided there is an appropriate level of background extensor
tonus and that the tonus is neither too low nor too high (Beritoff,
1915). In addition, an increase in tonus precedes the initiation
of locomotion (Mori et al., 1982). The excitability status or
state of the spinal network is thus of particular importance
(Edgerton et al., 2008). Air-stepping can be used as a unique and
important model for investigating human rhythmogenesis since
its manifestation is largely facilitated by a reduction of external
resistance, such as that resulting from body weight unloading
(Gurfinkel et al., 1998; Selionov et al., 2009). Below we consider
various experiments and observations in conditions of reduced
gravity effects that help revealing the intrinsic properties of
locomotor pattern generators and making evident the facilitation
of non-voluntary limb stepping in humans.

The spinal CPG circuitry can be activated in healthy humans
by applying tonic central or peripheral sensory inputs. As
we previously mentioned, in addition to the control of the
timing of major phase transitions and muscle activity production
(Nielsen and Sinkjaer, 2002; Pearson, 2004), sensory activity
has access to the functional state of CPG and may initiate a
stepping-like output (Sherrington, 1910; Gurfinkel et al., 1998;
Gerasimenko et al., 2010). Figure 1A illustrates different examples
of stimulation techniques that were explored for eliciting non-
voluntary air-stepping: continuous muscle vibration (40–60 Hz,
∼1 mm amplitude), and electrical stimulation of the superficial
peroneal or sural nerves (0.3 ms duration pulses, 2–3 mA,
60 Hz) (Selionov et al., 2009). To minimize interference with
the ongoing task of body weight and balance control, stepping
movements are elicited during air-stepping in the absence of
gravity influences and reduced external resistance. The subjects
were tested while lying on their side with the legs supported
using long ropes attached to the ceiling (Figure 1A) or using
an exoskeleton (Figure 1B) so that they provided low-friction
pendulum-like leg motion in the horizontal plane with a limited
vertical motion component. The afferent signals due to vibration
or electrical stimulation of peripheral nerves may increase the
excitability of several segments of the spinal cord, which may
facilitate triggering of locomotor-like movements. The latency of
the elicited cyclic movements varied significantly across subjects
and conditions (range 1–25 s). The delay in the onset of leg
movement likely reflects the general property of the pattern
generation circuitry and transition from tonic activation to
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the phasic CPG output. Generally, cyclic movements increased
monotonically for 2–10 cycles until they reached a relatively
constant amplitude of angular oscillations (Gurfinkel et al.,
1998; Selionov et al., 2009; Gerasimenko et al., 2010). The
characteristics of non-voluntary air-stepping (amplitude, cycle
duration) were similar to the voluntary stepping in the same
conditions.

In addition to peripheral sensory stimulation, central tonic
facilitatory influences may be used for eliciting rhythmic
leg movements, such as the Jendrassik maneuver and the
Kohnstamm phenomenon (Gurfinkel et al., 1998; Selionov
et al., 2009). An intriguing approach related to the role of
tonic influences is the Kohnstamm phenomenon (Kohnstamm,
1915), which consists in the appearance of involuntary tonic
activity and a particular sensation of “lightness” after the
cessation of a long-lasting (30–40 s) isometric effort. Post-
activation phenomena can therefore be used as a tool to
study tonic influences. After-effects of a voluntary, long-lasting
contraction in the leg muscles featured alternating rhythmic
leg movements that lasted for about 20–40 s (Selionov et al.,
2009), corresponding roughly to a typical duration of the post-
contraction activity (Craske and Craske, 1986; Duclos et al.,
2004; Ivanenko et al., 2006b). The difference in the effects
of the two techniques (the post-contraction phenomenon and
the Jendrassik maneuver) may point to the importance of
tonic activation of the lumbosacral enlargement, since voluntary
arm contractions (due to the Jendrassik maneuver) are weaker
in evoking stepping movements: they act primarily on the
cervical spinal cord and are not sufficient to evoke air-
stepping unless the experimenter triggers them (Selionov et al.,
2009).

Other techniques for triggering stepping movements are
based on the more direct stimulation of the spinal cord by
electromagnetic (Gerasimenko et al., 2010), transcutaneous or
epidural electrical stimulation (Shapkova and Schomburg, 2001;
Gorodnichev et al., 2012), which can initiate and sustain
movements more robustly than by stimulation of sensory afferent
fibers. Transcutaneous electrical spinal cord stimulation (at
5–40 Hz) is applied over T11-T12 vertebrae and presumably
activates the locomotor circuitry through the dorsal roots
(Gorodnichev et al., 2012; Gerasimenko et al., 2014), while
epidural stimulation is based on an implanted array of electrodes
directly placed over the back portion of the lower thoracic-
upper lumbar spinal cord (Figure 4A, upper panel). Rhythmic
locomotor-like leg movements in a gravity neutral position can
be evoked in ∼10–50% of healthy subjects, and the degree
of activation may depend on supraspinal influences and the
state and the rhythmogenesis capacity of the spinal circuitry
(Gurfinkel et al., 1998; Selionov et al., 2009; Gerasimenko et al.,
2010). The common feature of all stimulations described above
is that they are tonic. In this respect, they corroborate earlier
pioneering observations in decerebrate cats that stepping can be
induced using a simple tonic stimulation pattern applied to the
mesencephalic locomotor region (Shik et al., 1966), but they also
show that this type of control can be initiated at the lumbosacral
spinal cord level. Overall, the findings suggest that nonspecific
tonic excitability may elicit or facilitate CPG activity.

Finally, automatic, alternating movements of the legs can be
initiated by upper limb movements by asking participants to
move their arms rhythmically, as in hand-walking (Figure 1B;
Sylos-Labini et al., 2014a). The idea is grounded on the evidence
that the coordination between arms and legs during human
locomotion shares many features with that in quadrupeds
(Falgairolle et al., 2006; Zehr et al., 2007; Patrick et al., 2009;
Dietz, 2011; Kuhtz-Buschbeck and Jing, 2012). For instance, inter-
limb coupling in humans has previously been demonstrated
by evoking reflexes in one limb and observing the extent
to which the movement of another limb modulates reflex
expression during walking (Haridas and Zehr, 2003; Mezzarane
et al., 2011; Massaad et al., 2014). The coupling between
the activity of cervical motoneurons underlying hand-walking
and the activity of lumbosacral motoneurons underlying leg
movements (Figure 1B) is presumably indirect, delayed and
asynchronous (e.g., leg stepping is often characterized by a non-
integer ratio between arm and leg movements frequency). These
variable features suggest that signals related to arm movements
do not directly entrain the motor commands to leg muscles,
but affect the state of the lumbosacral locomotor circuitry,
consistent with a facilitatory effect of arm swinging on cyclic
leg muscle activity (de Kam et al., 2013). In addition, it has
been recently shown that cervical transcutaneous stimulation of
the spinal cord significantly facilitates non-voluntary air-stepping
leg movements and the lumbosacral locomotor-related neuronal
circuitry (Gerasimenko et al., 2014). One possible route for
these trigger signals is through the intrinsic spinal pathways
(propriospinal interneurons) linking cervical to lumbosacral
regions in humans (Nathan et al., 1996). However, considering
the latency of the leg responses relative to arm oscillations,
supraspinal contributions cannot be excluded. Rhythmic arm
movements imitating those during running or walking can
also evoke prominent modulation of leg muscle EMGs during
standing (Danna-Dos-Santos et al., 2009). Whatever the exact
mechanism, these findings (Figure 1B) reinforce the idea
that there exists a functional coupling between arm and
leg CPGs.

INTERACTION BETWEEN RHYTHM-GENERATION ACTIVITY
AND SENSORY INPUT
The previous studies, which aimed to activate the CPG circuits
using the “air-stepping” paradigm (Gurfinkel et al., 1998;
Selionov et al., 2009; Gerasimenko et al., 2010, 2014; Sylos-
Labini et al., 2014a), also revealed some essential features
of the intrinsic rhythm generation in humans. The evoked
cyclic movements share many of their characteristics with
animals. For instance, given the extensive evidence for the
presence of commissural interneurons driving the contralateral
locomotor circuitry (Kiehn, 2011), oscillator mechanisms and
tonic influences may not be limb-specific. We found, for example,
that treating one limb (e.g., applying electrical stimulation of the
peroneal or sural nerves of one leg) can have its output transferred
to another limb, even if the treated limb is kept stationary
(Selionov et al., 2009). Also, although pattern generators for
each limb have the potential to produce relatively autonomous
rhythmic patterns (Forssberg et al., 1980; Yang et al., 2005), right

Frontiers in Systems Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 14 | 3

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Solopova et al. Tapping into rhythm generation circuitry in humans

FIGURE 2 | Kinematic features of non-voluntary air-stepping
movements. (A) one-legged vs. two-legged air-stepping evoked by
quadriceps muscle vibration. Upper panels—histogram of the phase shift
between hip and knee joints across subjects and probes. Note similar
occurrence of forward and backward one-legged air-stepping and
predominantly forward 2-legged stepping. Low panels—examples of
transitions (in the middle of the record) from FW to BW stepping and
vice versa in 2 subjects. (B) examples of rhythmic leg movements
evoked by continuous electrical stimulation (ES) of the sural nerve in

the absence (left) and presence (right) of small (25 N) force applied to
the forefoot part of the foot. The force was applied approximately in the
direction of the longitudinal axis of the body using a long elastic thread
cord. The length of the thread cord was about 5 m so that fluctuations
in its force due to the length changes were minimal (<10%) during
air-stepping. Eight consecutive cycles are shown for each condition.
Note the appearance of noticeable oscillations in the ankle joint angle
and activity in the distal muscles in the presence of small load force
(adapted from Selionov et al., 2009).

and left sides are strongly coupled under most natural conditions
(Orlovsky et al., 1999; Ivanenko et al., 2006a; Maclellan et al.,
2014). Further evidence of the importance of bilateral coupling is
demonstrated by the finding that two-legged stepping was more
stable (and predominantly forward, Figure 2A, upper panels),
whereas one-legged stepping in some subjects displayed frequent
spontaneous transitions from forward to backward direction and
vice versa (Figure 2A, lower panels).

Air-stepping tends to involve prominent movements in the
hip and knee joints, whereas the ankle joint is typically not
involved, unless minimal loading forces are applied to the
foot (Figure 2B). The facilitatory effect of forces is often
accompanied by modulation of the EMG activity, consistent with
phase-dependent contribution of sensory activity to the pre-
programmed motoneuronal drive of the distal muscles during
human walking (Duysens et al., 2000; Nielsen and Sinkjaer,
2002). Even individuals with clinically motor complete paralysis
demonstrate modulated activity of distal leg muscles during
assisted stepping with body weight support (during locomotion
with 100% body unloading, no EMG activity was present)
(Harkema et al., 1997; Dietz et al., 2002). It can be concluded
that afferent input from load-related receptors (including Golgi
tendon organs, spindles, cutaneous receptors, and various load
mechanoreceptors in the foot arch, Duysens et al., 2000; Pearson,
2004; Gravano et al., 2011) contributes to the generation of
locomotor activity in the isolated human spinal cord. Therefore,
the sacral pattern generation circuitry (Cazalets and Bertrand,
2000) might be inactivated when the input from the support
surface is lacking. The more direct stimulation of the spinal

cord locomotor circuitry using repetitive electromagnetic stimuli
can evoke ankle joint oscillations (Gerasimenko et al., 2010).
However, in this case it likely involves stimulation of the
dorsal roots, and thus load-related afferents. Overall, the lack
of ankle joint movements during non-voluntary air-stepping
(Figures 1A, 2B) supports the hypothesis that the upper
lumbar pattern generator activity may constitute the major
oscillator “pacemaker,” whereas the sacral generator could play
a subordinator role for adaptation to specific foot-support
interactions. Also, minimal contact forces during air-stepping
may significantly improve accurate foot trajectory control,
suggesting that the support surface represents an importance
reference frame and is included in the locomotor body scheme
(Ivanenko et al., 2002).

ENGAGEMENT OF SUPRASPINAL MOTOR AREAS
Better understanding of interactions between spinal and
supraspinal influences on the state of CPG circuitry may
be important for developing gait rehabilitation strategies in
individuals with spinal cord and brain injuries. In addition,
there is an increasing consensus that motor centers in the
brain, and the motor cortex in particular, play an essential and
greater role in human walking compared to other mammals
(Capaday, 2002; Yang and Gorassini, 2006; Petersen et al.,
2012; Beloozerova et al., 2013). For instance, the coherence
analysis demonstrated significant coupling between EEG
recordings over the leg motor area and EMG from the tibialis
anterior muscle prior to heel strike during the swing phase of
walking, suggesting that the motor cortex and corticospinal
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FIGURE 3 | Motor responses during voluntary and non-voluntary
air-stepping in healthy subjects. (A) background EMG activity (upper panel)
and motor evoked potentials (lower panel) in response to transcranial
magnetic stimulation of the motor cortex (MEPs, mean ± SE, n = 8 subjects)

in the BF muscle during different phases of the step cycle. (B) background
soleus EMG activity (upper panel) and H-reflex (lower panel) modulation.
Asterisks denote significant differences. Note facilitation of motor responses
during voluntary stepping. Adapted from Solopova et al. (2014).

tract contribute directly to the muscle activity observed in
steady-state human walking (Petersen et al., 2012). Recently,
we compared motor evoked potentials (MEP) in response to
transcranial magnetic stimulation of the motor cortex and the
H-reflex during voluntary and vibration-induced air-stepping
movements in healthy humans (Solopova et al., 2014). Both
the MEPs and H-reflex were significantly smaller during
vibration-induced cyclic leg movements at matched amplitudes
of angular motion and muscle activity (Figure 3). One may
suppose that in both cases the locomotor-like leg movements
are evoked via activation of the spinal pattern generation
circuitry. The greater responsiveness to central inputs during
voluntary CPG activation (Figure 3) may be related to facilitation
of transcortical reflex pathways (Christensen et al., 1999),
increased depolarization of motoneurons, and/or an overall
facilitatory effect on spinal motoneurons and interneurons.
Interestingly, modulation of the H-reflex was observed in the
absence of noticeable background EMG activity of the soleus
and tibialis anterior muscles (likely due to the absence of limb
loading and ankle joint movements), and occurred during
the hypothetical stance phase of the step cycle (Figure 3),
consistent with a CPG phase-related modulation of spinal
reflexes.

These findings highlight differences between voluntary and
non-voluntary activation of the spinal pattern generator circuitry,
presumably due to an extra facilitatory effect of voluntary control
of stepping on spinal motoneurons and interneurons. It has been
argued that the engagement of supraspinal motor areas may be
beneficial for gait recovery (van den Brand et al., 2012), and
there is a link between facilitation of segmental reflexes and the
ability to recover gait (Dietz et al., 2009; Thompson and Wolpaw,
2014). Our results (Figure 3) support this hypothesis, and show
an overall facilitatory effect of supraspinally mediated stepping

on reflex responses. Such investigations may contribute to the
clinical development of CPG-modulating therapies (Guertin,
2014).

TAPPING INTO RHYTHM GENERATION CIRCUITRY IN
NEUROMOTOR DISORDERS
During the last decade, there has been a growing interest in
understanding an appropriate state of the spinal circuitry for
performing locomotor movements (Hultborn, 2001; Edgerton
et al., 2008; van den Brand et al., 2012; Selionov et al., 2013). In
particular, to trigger the CPG by neurons with command function
(Grillner, 2006), the physiological state of the spinal network
needs to be properly prepared (Edgerton et al., 2008) since the
same interneurons and motoneurons may contribute to a vast
repertoire of motor actions (Hultborn, 2001).

A facilitatory effect of simulated weightlessness can be
used for investigating rhythmogenesis of the spinal cord in
injured populations and for entraining the spinal locomotor
circuitry. Epidural stimulation is a technique that has been
used for a number of years to treat individuals with a spinal
cord injury, and various experiments emphasized a significant
complementary effect of epidural stimulation when combined
with pharmacological facilitation, e.g., serotonergic agonists, and
step training (Shapkova and Schomburg, 2001; Minassian et al.,
2007; Gerasimenko et al., 2008). The existence of a spinal
locomotor generator circuitry in humans has been confirmed
based on observations in patients with a severe spinal cord injury
implanted with an array of electrodes directly placed over the
back portion of the lower thoracic-upper lumbar spinal cord
(Minassian et al., 2004; Shapkova, 2004). In these experiments,
stepping-like movements were produced in patients who were
supine with the legs in the resting position (Figure 4A) or
suspended in the air (Figure 4B). Epidural stimulation could
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FIGURE 4 | EMG activity and rhythmic leg movements induced by
epidural spinal cord electrical stimulation (SCES) in SCI patients in a
supine position. (A) epidural SCES (upper panel) and an example of
EMG recordings (bottom panel) obtained from quadriceps (Q), hamstrings
(H), tibialis anterior (TA), and triceps surae (TS) during SCES at 31 Hz. The
goniometer traces of the knee joint angle illustrate the corresponding
induced rhythmical movements of the lower limbs. Adapted from
Minassian et al. (2004). (B) SCES-induced rhythmic leg movements in SCI
patients. During SCES, the patient was lying supine and the legs were

suspended on elastic straps in a position such that the hip and knee joints
were in semi-flexion (top panel). Middle panels: an example of
stepping-like movements at ∼1 Hz evoked with 2 Hz SCES in one SCI
patient. On the right—duration of stepping cycle in relationship to the
frequency of SCES in this patient. The frequency gradually increased from
3 to 100 Hz and then decreased from 100 to 0.5 Hz. Bottom panel:
location of the effective zone for initiating alternating stepping-like
movements with SCES in a group of paraplegic patients (n = 29). Adapted
from Shapkova (2004).

even produce rhythmic EMG activities without step-related
sensory feedback (stationary legs) or with a rhythm frequency
independent of that of passive treadmill stepping (Minassian
et al., 2013). Nevertheless, leg suspension significantly facilitates
the manifestation of rhythmic motion (Figure 4B) and permits
to reveal its characteristics. For instance, depending on the
exact location of the stimulating electrodes, the stimulation
could produce different patterns of rhythmic leg movements
with different involvements of leg joints (Shapkova, 2004),
consistent with the idea that there exist individual CPGs for
each limb and/or each segment, and are coordinated during
natural locomotion to produce a coherent interlimb pattern
(Graham Brown, 1912; Grillner, 1981). Epidural stimulation can
also transform the CPG circuitry into the active functional state
which persists even after a significant decrease of stimulation
frequency (Figure 4B, right panel). Interestingly, non-voluntary
(evoked by epidural stimulation) air-stepping movements in
incomplete spinal cord injury individuals can be sustained for
more than 1 h with increasing EMG activity, while voluntarily

initiated rhythmic leg movements in these patients demonstrate
progressive fatigue after several minutes (Shapkova, 2004). Thus,
even though supraspinally mediated activation of stepping has
an overall facilitatory effect on reflex responses (Figure 3) and
pattern generation (Solopova et al., 2014), it may also contribute
to the development of “central” fatigue (Taylor et al., 2006).
Furthermore, daily sessions with epidural stimulation evoking
air-stepping rhythmic movements were effective in restoring the
locomotor function in some children with a severe spinal cord
injury (Shapkova, 2004).

The residual sensory pathways may be critical in regaining
voluntary movement. Moreover, the neuromodulation and
activation of the “locomotor state” of the spinal circuitry below
the lesion may enable completely paralyzed individuals to process
conceptual, auditory and visual inputs, and to regain some
voluntary control of paralyzed muscles (Angeli et al., 2014). In
this study, a stimulation protocol was developed to allow the
individuals to stimulate for ∼1 h while practicing intentional
movement in the supine position. Four individuals diagnosed
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with clinically motor complete paralysis (classified as AIS-B and
AIS-A before implantation) and implanted with a lumbrosacral
spinal cord stimulator at least 2.2 years post injury were able to
generate EMG activity and movement during ankle dorsiflexion
in the presence of epidural stimulation following a verbal
command. No motor activity was present when attempting to
move without epidural stimulation. Furthermore, daily training
resulted in the generation of voluntary efforts with higher forces
and lower stimulation voltages to reach the thresholds that
enabled voluntary motor responses that could be modulated by
visual and/or auditory input (Angeli et al., 2014). Hence, it is
essential to discern how the spinal pattern generation circuitry
is controlled by sensory input and supraspinal networks to
design new rehabilitation devices that involve modulation of
the physiological state of the spinal cord during training. A
degradation of spinal neuronal activity takes place following
a spinal cord injury, suggesting that a continuous training
approach starting early after injury is necessary to maintain
neuronal activity below the level of the lesion (Dietz and Müller,
2004). Future studies may focus on the mechanisms underlying
the manifestation of early motor symptoms, muscle tone,
impaired sensory feedback and their relation to rhythmogenesis
investigated under simulated weightlessness conditions. This
may also help facilitating the application of neurophysiological
analyses as quantification tools for evaluating new medications
useful to assess or augment the rhythmogenesis capacity and gait
recovery in neurological disorders.

CONCLUDING REMARKS
Novel pharmacological strategies (Roy et al., 2012; Borton
et al., 2014; Guertin, 2014) and electromagnetic stimulation
techniques (Shapkova and Schomburg, 2001; Minassian et al.,
2007; Gerasimenko et al., 2008; Selionov et al., 2009; Angeli
et al., 2014) are being developed aimed at modulating spinal
activity and restoring the locomotor function. Even though
electrochemical or sensory stimulations do not necessarily induce
automated stepping by activating CPG networks, they may
transform lumbosacral circuits from non-functional to functional
states, enabling the information-processing interface in the spinal
cord to utilize multifaceted sensory input as a source of control
for locomotion (Courtine et al., 2009). Overall, recent findings
highlight the importance of investigating the tonic “state” of
the spinal circuits. Since the air-stepping is free from many of
the mechanical constraints of normal walking, it may provide
an effective model for studying how peripheral inputs influence
CPG behavior in human adults (Gurfinkel et al., 1998; Shapkova
and Schomburg, 2001; Selionov et al., 2009; Gerasimenko et al.,
2010; Solopova et al., 2014; Sylos-Labini et al., 2014a). Thus, the
beneficial effect of simulated weightlessness on rhythmogenesis
may enhance the utility of spinal cord stimulation techniques
for developing CPG-modulating therapies and augmentation of
function for disabled people.
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