119 research outputs found

    The Influence of Hierarchical Masks on Masked Repetition Priming: Evidence From Event-Related Potential Investigation

    Get PDF
    The discussion about relationship between prime and target has contributed to the mechanism of priming effect and object recognition. Nevertheless, the role of relationship between mask and target in those cognitive processes remains unquestioned. In the present study, we aim to investigate how mask-target hierarchical relationship may affect word priming and familiarity, by using the masked repetition paradigm and manipulating three hierarchical relationship between mask and target. It is hypothesized that a closer hierarchical relationship between mask and target is associated with a higher mask target similarity, and thereby it leads to a worse recognition performance. Our behavioral results do not support this hypothesis by showing no effect of mask target hierarchical relationship on response time (RT) and accuracy. Event-related potentials (ERPs) indicated that highly similar mask-target triggered (i.e., the subordinate-subordinate-subordinate trials) larger N1 amplitudes, suggesting that it requires more cognitive resource to discriminate the stimuli. In addition, trials with highly similar mask-target hierarchical relationship induced smaller P2 (150–250 ms) and larger mid-frontal FN400 amplitudes than do trials with low mask-target similarity (i.e., the subordinate-basic-subordinate and the subordinate-superordinate-subordinate trials). Our results suggested that the similarity between mask and target may impede conceptual fluency to reduce word priming and familiarity effect

    A Microalbuminuria Threshold to Predict the Risk for the Development of Diabetic Retinopathy in Type 2 Diabetes Mellitus Patients

    Get PDF
    OBJECTIVE: To test the hypothesis that a microalbuminuria (MA) threshold can help predict the risk for the development of diabetic retinopathy (DR) in type 2 diabetes mellitus (T2DM)_ patients. DESIGN: We conducted a cross-sectional study of 4739 subjects with T2DM and a prospective study of 297 subjects with T2DM in China respectively. METHODS: Clinical and laboratory data were collected and biologic risk factors associated with any DR were analysed. RESULTS: In the cross-sectional study, we found that MA was an independent risk factor for DR development; further, when the patients were divided into MA deciles, odds ratio (ORs) of DR for the patients in the sixth MA decile (10.7 mg/24 h) was 1.579-fold (1.161-2.147) compared to that for patients in the first MA decile. Furthermore, the OR of DR increased with a gradual increase in MA levels. Similarly, in the prospective study, during a mean follow-up of 4.5 years, we found that 51 patients (29.0%) of the 176 subjects with high MA level (10.7-30 mg/24 h) developed DR, while 17 patients (14.1%) of the 121 subjects with lower MA (<10.7 mg/24 h) developed DR, and the relative risk ratio of the development of DR is 2.13(95% CI, 1.58-3.62, P<0.001). CONCLUSION: These data suggest that an MA threshold can predict the risk for the development of DR in type 2 diabetes mellitus, although it is still within the traditionally established normal range

    First report of antifungal activity conferred by non-conventional peptides

    Get PDF
    Peptides are generally composed of 2-100 amino acid residues and well known as key regulators of many physiological processes (Tavormina et al., 2015" Wang et al., 2020a). Conventional peptides have been found to exhibit pronounced antifungal activities and are relatively safe for the environment and human health (Marcos et al., 2008" Ribeiro et al., 2013). Therefore, antifungal peptides, as novel fungicides, are promising alternatives for combating the increased incidence of antibiotic resistance in plant pathogenic microbes. Recently, non-conventional peptides (NCPs), a novel class of peptides derived from previously unannotated CDSs, have attracted significant attention (Wang et al., 2020b). Studies have demonstrated that NCPs play essential roles in various biological processes (Khitun et al., 2019" Plaza et al., 2017). However, antifungal activity of NCPs has not been reported to date

    Application of the pressure cooker technique for transarterial embolization of brain arteriovenous malformations: Factors affecting obliteration and outcomes

    Get PDF
    ObjectiveThe typical pressure cooker technique (PCT) and several modifications with similar mechanisms have been introduced to enhance the embolization of brain arteriovenous malformations (bAVMs). This study aimed to assess the effectiveness of transarterial embolization of bAVMs with the PCT.MethodFrom January 2019 to December 2021, 125 consecutive patients with bAVM managed by transarterial embolization in the prospective database on cerebral vascular diseases of a single center were retrospectively reviewed. Patient data and lesion characteristics were collected. According to the treatment strategy, the patients were assigned to the PCT group (46 patients) and conventional embolization technique (CET) group (79 patients).ResultsBaseline patient features were comparable between the two groups. After the first procedure, complete obliteration immediately was observed in 61 and 42% of patients in the PCT and CET groups, respectively. The rate was markedly elevated in the PCT group (p = 0.04). In subgroup analysis, the rate of immediate complete obliteration was starkly increased in PCT group patients with Spetzler-Martin grade I/II bAVM (86 and 53% in the PCT and CET groups, respectively; p = 0.0036). The overall complication rates were similar in the two groups (13 and 10% in the PCT and CET groups, respectively; p = 0.77). In multivariable analysis, nidus size &gt;3 cm (OR = 8.826, 95% CI: 1.250–62.312; p = 0.03) and deep location (OR = 8.576, 95% CI: 1.480–49.690; p = 0.02) were significant factors affecting complete obliteration in the PCT group.ConclusionThe PCT may yield a higher rate of immediate complete obliteration with transarterial embolization of bAVMs, without increasing the rate of procedure-related complications

    Characterization and gene expression patterns analysis implies BSK family genes respond to salinity stress in cotton

    Get PDF
    Identification, evolution, and expression patterns of BSK (BR signaling kinase) family genes revealed that BSKs participated in the response of cotton to abiotic stress and maintained the growth of cotton in extreme environment. The steroidal hormone brassinosteroids (BR) play important roles in different plant biological processes. This study focused on BSK which were downstream regulatory element of BR, in order to help to decipher the functions of BSKs genes from cotton on growth development and responses to abiotic stresses and lean the evolutionary relationship of cotton BSKs. BSKs are a class of plant-specific receptor-like cytoplasmic kinases involved in BR signal transduction. In this study, bioinformatics methods were used to identify the cotton BSKs gene family at the cotton genome level, and the gene structure, promoter elements, protein structure and properties, gene expression patterns and candidate interacting proteins were analyzed. In the present study, a total of 152 BSKs were identified by a genome-wide search in four cotton species and other 11 plant species, and phylogenetic analysis revealed three evolutionary clades. It was identified that BSKs contain typical PKc and TPR domains, the N-terminus is composed of extended chains and helical structures. Cotton BSKs genes show different expression patterns in different tissues and organs. The gene promoter contains numerous cis-acting elements induced by hormones and abiotic stress, the hormone ABA and Cold-inducing related elements have the highest count, indicating that cotton BSK genes may be regulated by various hormones at different growth stages and involved in the response regulation of cotton to various stresses. The expression analysis of BSKs in cotton showed that the expression levels of GhBSK06, GhBSK10, GhBSK21 and GhBSK24 were significantly increased with salt-inducing. This study is helpful to analyze the function of cotton BSKs genes in growth and development and in response to stress

    On the Validation of a Multiple-Network Poroelastic Model Using Arterial Spin Labeling MRI Data

    Get PDF
    The Multiple-Network Poroelastic Theory (MPET) is a numerical model to characterize the transport of multiple fluid networks in the brain, which overcomes the problem of conducting separate analyses on individual fluid compartments and losing the interactions between tissue and fluids, in addition to the interaction between the different fluids themselves. In this paper, the blood perfusion results from MPET modeling are partially validated using cerebral blood flow (CBF) data obtained from arterial spin labeling (ASL) magnetic resonance imaging (MRI), which uses arterial blood water as an endogenous tracer to measure CBF. Two subjects—one healthy control and one patient with unilateral middle cerebral artery (MCA) stenosis are included in the validation test. The comparison shows several similarities between CBF data from ASL and blood perfusion results from MPET modeling, such as higher blood perfusion in the gray matter than in the white matter, higher perfusion in the periventricular region for both the healthy control and the patient, and asymmetric distribution of blood perfusion for the patient. Although the partial validation is mainly conducted in a qualitative way, it is one important step toward the full validation of the MPET model, which has the potential to be used as a testing bed for hypotheses and new theories in neuroscience research

    Raffinose degradation-related gene GhAGAL3 was screened out responding to salinity stress through expression patterns of GhAGALs family genes

    Get PDF
    A-galactosidases (AGALs), the oligosaccharide (RFO) catabolic genes of the raffinose family, play crucial roles in plant growth and development and in adversity stress. They can break down the non-reducing terminal galactose residues of glycolipids and sugar chains. In this study, the whole genome of AGALs was analyzed. Bioinformatics analysis was conducted to analyze members of the AGAL family in Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense, and Gossypium raimondii. Meanwhile, RT-qPCR was carried out to analyze the expression patterns of AGAL family members in different tissues of terrestrial cotton. It was found that a series of environmental factors stimulated the expression of the GhAGAL3 gene. The function of GhAGAL3 was verified through virus-induced gene silencing (VIGS). As a result, GhAGAL3 gene silencing resulted in milder wilting of seedlings than the controls, and a significant increase in the raffinose content in cotton, indicating that GhAGAL3 responded to NaCl stress. The increase in raffinose content improved the tolerance of cotton. Findings in this study lay an important foundation for further research on the role of the GhAGAL3 gene family in the molecular mechanism of abiotic stress resistance in cotton

    FDCNet: Frontend-Backend Fusion Dilated Network Through Channel-Attention Mechanism

    No full text
    Crowd counting has attracted much attention in computer vision owing to its fundamental contribution in public security. But due to occlusions, perspective distortions, scale variations, and background interference it faces a great challenge. In this paper we propose a novel model to count crowds, named FDCNet: frontend-backend fusion dilated network through channel-attention mechanism. It merges the frontend feature map with the backend feature map, achieving a fusion of various scale features without additional branches or extra subtasks. The fusion is fed into the channel-attention block to optimize the procedure and to conduct feature recalibration to use global and spatial information. Furthermore, we utilize dilated layers to obtain a high-quality density map, and the SSIM-based loss function is added to compare the local correlation between the estimated density map and the ground truth. Our FDCNet is verified in four common datasets and gets a brilliant estimation

    Deposition environment and provenance of the Palaeogene Shahejie Formation in Nanpu Sag: Evidences from trace and rare earth element geochemistry

    No full text
    In order to reveal the formation mechanism of the organic-rich shales of the Shahejie Formation in Nanpu Sag, the depositional environment and provenance were investigated in detail through analyzing trace and rare earth elements(REE) geochemical characteristics. The results show that the trace elements Li, Cs and Bi are enriched, Cr and Sn are relatively depleted, and other trace elements are close to those in the upper continental crust(UCC).The total amount of REE vary widely, which is close to or higher than the average value in the UCC, and the supply of terrestrial source debris is adequate. The REE allocation pattern shows light rare earth element(LREE) enrichment with a high degree of divergence, and a relative deficit of heavy rare earth element(HREE) with a low degree of divergence. Eu negative anomaly is obvious, Ce is basically normal. The variations of Sr abundance and Sr/Ba ratio reflect that, in Nanpu Sag, the lake water was separated to a certain extent, and the fresh water, brackish water and saline water coexisted during sedimentary period of the third member of Shahejie Formation(Es3), and during these dimentary period of the first member of Shahejie Formation(Es1), the connectivity of lake water was enhanced, which was dominated by brackish water.The values of the V/(V+Ni), Th/U, δCe, and Ceanom comprehensively delineate the water body presented suboxic environment with moderate stratification. Respectively, the source Ba content indicated the water body was dominated by high paleoproductivity. The REE assemblage characteristics suggests that the provenance of Shahejie Formation were primarily derived from Yanshanian granites developed in Yanshanian fold belt and a small amount of sedimentary rocks. The development of organic-rich shales in the Shahejie Formation in Nanpu Sag is closely related to paleoenvironment and paleogeography, which can be summarized as the followings: ①suitable paleosalinity as well as sufficient nutrients at water body contributed to the booming of various planktonic algae, improving the production efficiency of the aquatic organic matter; ②suboxic water column slowed down the degradation of oxygen-sensitive material during the burial process, enhancing the preservation efficiency of sedimentary organic matter
    • …
    corecore