17 research outputs found

    Image Denoising via L

    Get PDF
    The L0 gradient minimization (LGM) method has been proposed for image smoothing very recently. As an improvement of the total variation (TV) model which employs the L1 norm of the gradient, the LGM model yields much better results for the piecewise constant image. However, just as the TV model, the LGM model also suffers, even more seriously, from the staircasing effect and the inefficiency in preserving the texture in image. In order to overcome these drawbacks, in this paper, we propose to introduce an effective fidelity term into the LGM model. The fidelity term is an exemplar of the moving least square method using steering kernel. Under this framework, these two methods benefit from each other and can produce better results. Experimental results show that the proposed scheme is promising as compared with the state-of-the-art methods

    Atomically Dispersed Pd on Nanodiamond/Graphene Hybrid for Selective Hydrogenation of Acetylene

    Get PDF
    An atomically dispersed palladium (Pd) catalyst supported onto a defective nanodiamond-graphene (ND@G) is reported here for selective hydrogenation of acetylene in the presence of abundant ethylene. The catalyst exhibits remarkable performance for the selective conversion of acetylene to ethylene: high conversion (100%), ethylene selectivity (90%), and good stability (i.e., steady for at least 30 hours). The unique struc-ture of the catalyst (i.e., atomically dispersion of Pd atoms on graphene through Pd-C bond anchoring) ensure the facile desorption of ethylene against the over-hydrogenation of ethylene to undesired ethane, which is the key for the outstanding selectivity of the catalyst

    Anchoring Cu 1 species over nanodiamond-graphene for semi-hydrogenation of acetylene

    Get PDF
    The design of cheap, non-toxic, and earth-abundant transition metal catalysts for selective hydrogenation of alkynes remains a challenge in both industry and academia. Here, we report a new atomically dispersed copper (Cu) catalyst supported on a defective nanodiamondgraphene (ND@G), which exhibits excellent catalytic performance for the selective conversion of acetylene to ethylene, i.e., with high conversion (95%), high selectivity (98%), and good stability (for more than 60 h). The unique structural feature of the Cu atoms anchored over graphene through Cu-C bonds ensures the effective activation of acetylene and easy desorption of ethylene, which is the key for the outstanding activity and selectivity of the catalyst

    Tin Assisted Fully Exposed Platinum Clusters Stabilized on Defect-Rich Graphene for Dehydrogenation Reaction

    Get PDF
    Tin assisted fully exposed Pt clusters are fabricated on the core-shell nanodiamond@graphene (ND@G) hybrid support (a-PtSn/ND@G). The obtained atomically dispersed Pt clusters, with an average Pt atom number of 3, were anchored over the ND@Gsupport by the assistance of Sn atoms as a partition agent and through the Pt-C bond between Pt clusters and defect-rich graphene nanoshell. The atomically dispersed Pt clusters guaranteed a full metal availability to the reactants, a high thermal stability, and an optimized adsorption/desorption behavior. It inhibits the side reactions and enhances catalytic performance in direct dehydrogenation of n-butane at a low temperature of 450 °C, leading to \u3e98% selectivity toward olefin products, and the turnover frequency (TOF) of a-PtSn/ND@G is approximately 3.9 times higher than that of the traditional Pt3Sn alloy catalyst supported on Al2O3 (Pt3Sn/Al2O3)

    Mechanistic Studies into the Selective Production of 2,5-furandicarboxylic Acid from 2,5-bis(hydroxymethyl)furan Using Au-Pd Bimetallic Catalyst Supported on Nitrated Carbon Material

    No full text
    Aerobic oxidation of bio-sourced 2,5-bis(hydroxymethyl)furan (BHMF) to 2, 5-furandicarboxylic acid (FDCA), a renewable and green alternative to petroleum-derived terephthalic acid (TPA), is of great significance in green chemicals production. Herein, hierarchical porous bowl-like nitrogen-rich (nitrated) carbon-supported bimetallic Au-Pd nanocatalysts (AumPdn/ N-BNxC) with different nitrogen content and bimetal nanoparticle sizes were developed and employed for the highly efficient aerobic oxidation of BHMF to FDCA in sodium carbonate aqueous solution. The reaction pathway for catalytic oxidation of BHMF went through the steps of BHMF→HMF→HMFCA→FFCA→FDCA. Kinetics studies showed that the activation energies of BHMF, HMF, HMFCA, and FFCA were 58.1 kJ·moL−1, 39.1 kJ·moL−1, 129.2 kJ·moL−1, and 56.3 kJ·moL−1, respectively, indicating that the oxidation of intermediate HMFCA to FFCA was the rate-determining step. ESR tests proved that the active species was a superoxide radical. Owing to the synergy between the nitrogen-rich carbon support and bimetallic Au-Pd nanoparticles, the Au1Pd1/N-BN2C nanocatalysts exhibited BHMF conversion of 100% and FDCA yield of 95.8% under optimal reaction conditions. Furthermore, the nanocatalysts showed good stability and reusability. This work provides a versatile strategy for the design of heterogeneous catalysts for the highly efficient production of FDCA from BHMF

    A Novel Robust Method for Solving CMB Receptor Model Based on Enhanced Sampling Monte Carlo Simulation

    No full text
    The traditional effective variance weighted least squares algorithms for solving CMB (Chemical Mass Balance) models have the following drawbacks: When there is collinearity among the sources or the number of species is less than the number of sources, then some negative value of contribution will appear in the results of the source apportionment or the algorithm does not converge to calculation. In this paper, a novel robust algorithm based on enhanced sampling Monte Carlo simulation and effective variance weighted least squares (ESMC-CMB) is proposed, which overcomes the above weaknesses. In the following practical instances for source apportionment, when nine species and nine sources, with no collinearity among them, are selected, EPA-CMB8.2 (U.S. Environmental Protection Agency-CMB8.2), NKCMB1.0 (NanKai University, China-CMB1.0) and ESMC-CMB can obtain similar results. When the source raise dust is added to the source profiles, or nine sources and eight species are selected, EPA-CMB8.2 and NKCMB1.0 cannot solve the model, but the proposed ESMC-CMB algorithm can achieve satisfactory results that fully verify the robustness and effectiveness of ESMC-CMB

    Operative strategies for ankylosing spondylitis-related thoracolumbar kyphosis: focus on the cervical stiffness, coronal imbalance and hip involvement

    No full text
    Abstract Background Cervical stiffness, coronal imbalance and limited hip movement all play crucial roles in designing the corrective surgery for ankylosing spondylitis-related thoracolumbar kyphosis (AS-TLK). However, a comprehensive classification and tailored strategies for directing clinical work are lacking. This study aims to investigate the types and surgical strategies for AS-TLK that consider cervical stiffness, coronal imbalance and hip involvement as the key factors. Methods 25 consecutive AS-TLK patients were divided into three types according to their accompanying features: Type I: with a flexible cervical spine; Type IIA: with a stiff cervical spine; Type IIB: with coronal imbalance; Type IIC: with limited hip movement. Type III is the mixed type with at least two conditions of Type II. Individual strategies were given correspondingly. Spinal-pelvic-femoral parameters were measured, Scoliosis Research Society outcome instrument-22 (SRS-22) was used and complications were recorded and analysed. Results All patients (Type I 10, Type II 8 and Type III 7) underwent surgery successfully. 13 cases with 16 complications were recorded and cured. The patients were followed up for 24–65 months with an average of 33.0 ± 9.6 months. Both the sagittal and coronal parameters were corrected and decreased significantly (all, p < 0.05). SRS-22 scores showed a satisfactory outcome. Conclusion Thoracolumbar kyphosis secondary to ankylosing spondylitis are complex and variable. Considering the factors of cervical stiffness, coronal imbalance and hip involvement assists in making decisions individually and achieving a desired surgical result

    Development and trends in metabolomics studies in psoriasis: A bibliometric analysis of related research from 2011 to 2024

    No full text
    Background: Psoriasis is a chronic, inflammatory skin disease with autoimmune characteristics. Recent research has made significant progress in the field of psoriasis metabolomics. However, there is a lack of bibliometric analysis on metabolomics of psoriasis. The objective of this study is to utilize bibliometrics to present a comprehensive understanding of the knowledge structure and research hotspots in psoriasis within the field of metabolomics. Methods: We conducted a bibliometric analysis by searching the Web of Science Core Collection database for publications on metabolomics in psoriasis from 2011 to 2024. To perform this analysis, we utilized tools such as VOSviewers, CiteSpace, and the R package ''bibliometrix''. Results: A total of 307 articles from 47 countries, with the United States and China leading the way, were included in the analysis. The publications focusing on metabolomics in psoriasis have shown a steady year-on-year growth. The Medical University of Bialystok is the main research institution. The International Journal of Molecular Sciences emerges as the prominent journal in the field, while the Journal of Investigative Dermatology stands out as the highly co-cited publication. A total of 2029 authors contributed to these publications, with Skrzydlewska Elzbieta, Baran Anna, Flisiak Iwona, Murakami Makoto being the most prolific contributors. Notably, Armstrong April W. received the highest co-citation. Investigating the mechanisms of metabolomics in the onset and progression of psoriasis, as well as exploring therapeutic strategies, represents the primary focus of this research area. Emerging research hotspots encompass inflammation, lipid metabolism, biomarker, metabolic syndrome, obesity, and arthritis. Conclusion: The results of this study indicate that metabolism-related research is thriving in psoriasis, with a focus on the investigation of metabolic targets and interventions within the metabolic processes. Metabolism is expected to be a hot topic in future psoriasis research
    corecore