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The 𝐿
0
gradient minimization (LGM) method has been proposed for image smoothing very recently. As an improvement of the

total variation (TV)model which employs the 𝐿
1
norm of the gradient, the LGMmodel yields much better results for the piecewise

constant image. However, just as the TV model, the LGM model also suffers, even more seriously, from the staircasing effect and
the inefficiency in preserving the texture in image. In order to overcome these drawbacks, in this paper, we propose to introduce
an effective fidelity term into the LGM model. The fidelity term is an exemplar of the moving least square method using steering
kernel. Under this framework, these two methods benefit from each other and can produce better results. Experimental results
show that the proposed scheme is promising as compared with the state-of-the-art methods.

1. Introduction

Noise is inevitable in the process of image acquisition and
transmission, which brings great trouble to the subsequent
image analysis; therefore, image denoising is the most funda-
mental research topic in the community of image processing
and computer vision. However, there is always a dilemma
for the denoising algorithms to simultaneously remove noise
and to preserve edges. The objective of almost all methods
focus on how to get a tradeoff between smoothing noise
and blurring edges.The state-of-the-art denoising algorithms
can be categorized as (1) those taking advantage of nonlocal
similarity of patches in the image: such methods include
the nonlocal mean (NL-Mean) [1], BM3D [2], and PLOW
[3]; in [4], the author presented a tutorial on these state-
of-the-art denoising methods, and it has been shown that
the LARK [5] takes the bilateral filter [6] and the nonlocal
mean (NLM) [1] as special cases and they are closely related
to the anisotropic diffusion [7]; (2) variational and partial
differential equations- (PDEs-) based methods, such as the
anisotropic diffusion [7], total variation [8], and relatedworks
[9–14]; and (3) sparse representation based method, such as

theK-SVD [15] and nonlocal sparse works [16, 17].There have
been a flurry of works generalizing the variationalmethods in
nonlocal manner, such as [18, 19].

The partial differential equations (PDEs) have been justi-
fied as effective tools for image smoothing during the last two
decades, which are able to achieve a good tradeoff between
noise removal and edge-preserving. The characteristic of
these approaches is that it takes the form of an unconstrained
regularized data fitting model, where the desired image is
obtained as a regularized minimizer to a certain functional
which contains both regularization and fidelity terms. One
of the most popular methods in this framework is the total
variation (TV)method [8, 11, 13, 14, 20, 21]. It can be described
as an unconstrained problem with 𝐿

1
norm of the gradient

as the regularization term. Recently, Xu et al. proposed a
modified scheme of the TV model by replacing 𝐿

1
norm of

the gradient with 𝐿
0
norm in the optimization framework

for image smoothing, that is, the 𝐿
0
gradient minimization

(LGM) [22]. Compared with the TV model using the 𝐿
1

norm, the LGM model has proved to be very effective on
preserving edges due to the avoidance of local filtering and of
averaging operation. However, LGM scheme tends to smooth
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the observed image towards a piecewise constant image,
which also suffers, even more seriously than the TV model,
from the staircase effect, and it can removemost of the texture
when applied to the texture images.

Meanwhile, a nonparametric data fitting approach based
on the localized least square method has been proposed for
image processing [23, 24]. This framework is represented by
moving least squares (MLS) model [23], where two kinds
of robust estimators were applied to the MLS for image
processing. In [5], a steering kernel regression is proposed
which steers the local kernels along the directions of the
local edge structure; the method is typically called local
adaptive kernel regression (LARK). It is the exemplar of the
moving least square method using steering kernel. In [24],
Lee et al. combined the MLS and the total variation used in
the image denoising. The MLS method using steering kernel
can preserve the texture and edges well. However, the models
showweakness against outliers, which is themain reason that
the denoising performance of MLS based models is usually
not good.

In order to overcome the drawback of the LGMmodel, in
this paper, we introduce the MLS model with steering kernel
into the LGM model as fidelity term. The proposed scheme
can provide a better solution than the conventional LGM
scheme on overcoming the staircase effect and preserving
texture. The proposed model also endows the MLS model
with better denoising performance since LGM is strong
against outliers.

The remainder of this paper is organized as follows.
In Section 2, the LGM and MLS models are introduced in
brief. In Section 3, the proposed model is presented and the
numerical solution is given. In Section 4, the performance
of the proposed model is demonstrated by experiment and
comparison. Finally, conclusions are drawn in Section 5.

2. Background

In this section, we briefly review the related works, that is, the
LGM [22] andMLS with steering kernel (LARK) [5], and our
description follows that of [5, 22].

2.1. LGM: 𝐿
0
Gradient Minimization. Suppose 𝑓 is the input

image and 𝑢(x) the smoothed image and 𝜕
𝑥
𝑢(x
𝑖
) and 𝜕

𝑦
𝑢(x
𝑖
)

are the partial derivatives calculated between neighboring
pixels along 𝑥 and 𝑦 directions, respectively. Then the
gradient ∇𝑢(x

𝑖
) = (𝜕

𝑥
𝑢(x
𝑖
), 𝜕
𝑦
𝑢(x
𝑖
))
𝑇 can be obtained for

each pixel.The gradientmeasure of 𝐿
0
gradientminimization

is expressed as follows:

𝑁(𝑢) = # {𝑖 | 󵄨󵄨󵄨󵄨𝜕𝑥𝑢 (x𝑖)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑦
𝑢 (x
𝑖
)
󵄨󵄨󵄨󵄨󵄨
̸= 0} , (1)

where #{} is the counting operator; it counts x
𝑖
whose

magnitude |𝜕
𝑥
𝑢(x
𝑖
)| + |𝜕

𝑦
𝑢(x
𝑖
)| is not zero, that is, the 𝐿

0

norm of gradient. To note that the measure 𝑁(𝑢) should be
combined with a general constraint, the result 𝑢(x) should be

structurally similar to the input image 𝑓(x) [22]. The specific
objective function is expressed as

min
𝑢

∑

𝑖

(𝑢 (x
𝑖
) − 𝑓 (x

𝑖
))
2

s.t. 𝑁 (𝑢) = 𝑘,

(2)

where 𝑁(𝑢) = 𝑘 indicates that 𝑘 nonzero gradients exist
in the result. Equation (2) can be further written as an
unconstrained optimization problem as follows:

min
𝑢

{𝜆 ⋅ 𝑁 (𝑢) +∑

𝑖

(𝑢 (x
𝑖
) − 𝑓 (x

𝑖
))
2
} , (3)

where 𝜆 is a weight directly controlling the significance of
𝑁(𝑢).

2.2. MLS: Moving Least Squares. Suppose that the observed
image and the estimated image are, respectively, discrete
sampling of functions 𝑓(x) : 𝐷 → 𝑅 and 𝑢(x) : 𝐷 → 𝑅 at
an equally spaced point set in a rectangle𝐷 ⊂ 𝑅

2. The task of
image restoration is to estimate the image 𝑢(x) for each point
x ∈ 𝐷 given the low quality observations 𝑓(x). In the MLS
method, 𝑢(x) is always derived from a polynomial space of
degree 𝑑 and dimension 𝑚 denoted by∏𝑑

𝑚
. The relationship

between degree 𝑑 and dimension 𝑚 is defined as 𝑚 =

(1/2)(𝑑 + 2)(𝑑 + 1), where dimension𝑚 decides the number
of basis {𝑢

𝑛
}
𝑚−1

𝑛=0
of the polynomial space∏𝑑

𝑚
. For example, if

𝑑 = 2, then𝑚 = 6, andwe take this combination in our imple-
mentation. We can get the polynomial space ∏𝑑

𝑚
with the

corresponding basis {𝑢
𝑛
}
5

𝑛=0
= {1, 𝑥, 𝑦, 𝑥

2
, 𝑥𝑦, 𝑦

2
}. Therefore,

the form of the regression function at any point x is given by

𝑢 (x) = 𝑏
0
𝑢
0
+ 𝑏
1
𝑢
1
+ ⋅ ⋅ ⋅ + 𝑏

5
𝑢
5
=

5

∑

𝑛=0

𝑏
𝑛
𝑢
𝑛
, (4)

where {𝑏
𝑛
}
5

𝑛=0
are the coefficients.TheMLSmethod performs

in a local manner, and the value of the estimated image at
a location is influenced only by the pixels within a small
neighborhood of that position. As such, MLS provides a
rich mechanism for computing pointwise estimates of the
function with minimal assumptions about global signal or
noisy model. Define 𝑖 = 1, 2, . . . , 𝑝 as the 𝑖th sampling point
around the estimated point x. Usually, 𝑝 has to be bigger than
𝑚 so that the problem can be solved. Then, for any point x,
the polynomial approximation function 𝑢(x) is obtained by
solving the following quadratic minimization problem:

min
{𝑏
𝑛
}

𝑝

∑

𝑖=1

[𝑓 (x
𝑖
) − 𝑢 (x

𝑖
)]
2
𝐾(x
𝑖
− x) , (5)

where 𝐾(x
𝑖
− x) denotes the kernel function, which decides

how much the data point 𝑓(x
𝑖
) contributes to the estimated

pixel value. If𝐾(x
𝑖
−x) is large, 𝑓(x

𝑖
) contributes much to the

estimated pixel value. In our proposed method, we employ
the steering kernel function [5] that is shown in detail in the
next subsection.
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2.3. The Steering Kernel. A typical choice of the kernel is an
isotropic Gaussian kernel, which computes a weighted aver-
age of pixel values in the neighborhood, where the weights
decrease with distance from the neighborhood center. How-
ever, the isotropic Gaussian kernel suffers from severe limita-
tion that it usually blurs the edge structures in the image.The
bilateral kernel, which is a typical data-adapted kernel, can
preserve the edge structures better by introducing the pixel
value into the weight. However, the bilateral kernel break-
ing into spatial and radiometric terms ignores correlations
between positions of the pixels and their values, so the
performance is weakened. The steering kernel proposed in
[5] measures the local structure of data by making use of
an estimate of the local geodesic distance between nearby
samples, so it can preserve image edges and texture well. The
steering kernel is represented as

𝐾(x
𝑖
− x) =

√det (C
𝑖
)

2𝜋ℎ2𝜇
2

𝑖

exp{−
(x
𝑖
−x)𝑇C

𝑖
(x
𝑖
−x)

2ℎ2𝜇
2

𝑖

} , (6)

where 𝜇
𝑖
is a scalar that captures the local density of data

samples (nominally set to 𝜇
𝑖
= 1), ℎ is the global smoothing

parameter, and C
𝑖
is symmetric covariance matrices of the

gradient of sample values estimated from the given data,
yielding an approximation of local geodesic distance in the
exponent of the kernel. This kernel is closely related but
somewhatmore general than the Beltrami kernel [25] and the
coherence enhancing diffusion approach [26, 27].

3. Proposed Method

Since the LGM suffers from the serious staircasing effect and
removes most details, we introduce an effective fidelity term
that is an exemplar of the moving least square method using
steering kernel. Then, the proposed model is written as

min {𝜆 ⋅ 𝑁 (𝑢) +

𝑝

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑓 (x𝑖) − 𝑢 (x𝑖)
󵄩󵄩󵄩󵄩

2

2
𝐾(x
𝑖
− x)} , (7)

where 𝜆 and𝑁(𝑢) are identical to those in (3) and the second
part in (7) is the same as that in (5); that is, we replace the
fidelity term in (3) with the weighted sum in (5) such that the
LGM in (3) can preserve texture better.

The numerical methods are borrowed from [5, 22, 28].
Specifically, two auxiliary variables ℎ

𝑖
and V
𝑖
are introduced to

expand the original terms and iteratively updated; therefore,
(7) is reformulated as

min
𝑢,ℎ,V

{𝜆𝑁 (ℎ, V) +
𝑝

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑓 (x𝑖) − 𝑢 (x𝑖)
󵄩󵄩󵄩󵄩

2

2
𝐾(x
𝑖
− x)

+ 𝛽 ((𝜕
𝑥
𝑢 (x
𝑖
) − ℎ
𝑖
)
2
+ (𝜕
𝑦
𝑢 (x
𝑖
) − V
𝑖
)
2

)

⋅ 𝐾 (x
𝑖
− x)} ,

(8)

where𝛽 is an automatically adapting parameter to control the
similarity between variables (ℎ, V) and their corresponding
gradients. The specific solution is to split (8) into two
subproblems to find (ℎ, V) and𝑢, respectively, in an alternative
minimization manner.

Subproblem 1 (Computing (ℎ, V)).When calculating (ℎ, V), we
remove the terms in which (ℎ, V) are not involved from (8).
Then, the object function is written as the following form:

min
ℎ,V

{
𝜆

𝛽
𝑁 (ℎ, V)

+

𝑝

∑

𝑖=1

((𝜕
𝑥
𝑢 (x
𝑖
) − ℎ
𝑖
)
2
+ (𝜕
𝑦
𝑢 (x
𝑖
) − V
𝑖
)
2

)

⋅ 𝐾 (x
𝑖
− x)} .

(9)

This subproblem is similar to that in the LGM and can be
easily solved by spatially decomposing so that each element
ℎ
𝑖
and V
𝑖
can be estimated individually. Since𝑁(ℎ, V) = #{𝑖 |

|ℎ
𝑖
| + |V
𝑖
| ̸= 0} = #{𝑖 | (|ℎ

𝑖
| + |V
𝑖
|)𝐾(x
𝑖
− x) ̸= 0}, therefore, (9)

can be further written as

𝑝

∑

𝑖=1

min
ℎ
𝑖
,V
𝑖

{[
𝜆

𝛽
𝐻 (

󵄨󵄨󵄨󵄨ℎ𝑖
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨V𝑖
󵄨󵄨󵄨󵄨) + (𝜕𝑥𝑢 (x𝑖) − ℎ𝑖)

2
+ (𝜕
𝑦
𝑢 (x
𝑖
) − V
𝑖
)
2

]𝐾 (x
𝑖
− x)} , (10)

where

𝐻(
󵄨󵄨󵄨󵄨ℎ𝑖
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨V𝑖
󵄨󵄨󵄨󵄨) =

{

{

{

1
󵄨󵄨󵄨󵄨ℎ𝑖
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨V𝑖
󵄨󵄨󵄨󵄨 ̸= 0

0
󵄨󵄨󵄨󵄨ℎ𝑖
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨V𝑖
󵄨󵄨󵄨󵄨 = 0.

(11)

The energy for each element (ℎ
𝑖
, V
𝑖
) reads

𝐸
𝑖
= (

𝜆

𝛽
𝐻 (

󵄨󵄨󵄨󵄨ℎ𝑖
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨V𝑖
󵄨󵄨󵄨󵄨) + (ℎ𝑖 − 𝜕𝑥𝑢 (x𝑖))

2

+ (V
𝑖
− 𝜕
𝑦
𝑢 (x
𝑖
))
2

)𝐾 (x
𝑖
− x)

(12)
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and each element (ℎ
𝑖
, V
𝑖
) has the following closed-form:

(ℎ
𝑖
, V
𝑖
)

=

{{

{{

{

(0, 0) (𝜕
𝑥
𝑢 (x
𝑖
))
2
+ (𝜕
𝑦
𝑢 (x
𝑖
))
2

≤
𝜆

𝛽

(𝜕
𝑥
𝑢 (x
𝑖
) , 𝜕
𝑦
𝑢 (x
𝑖
)) otherwise.

(13)

Subproblem 2 (Computing 𝑢).When calculating 𝑢, the terms
not involving 𝑢 are removed from (8). Then, the functional is
written as the following form:

min
𝑢

{

𝑝

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑓 (x𝑖) − 𝑢 (x𝑖)
󵄩󵄩󵄩󵄩

2

2
𝐾(x
𝑖
− x)

+ 𝛽 ((𝜕
𝑥
𝑢 (x
𝑖
) − ℎ
𝑖
)
2
+ (𝜕
𝑦
𝑢 (x
𝑖
) − V
𝑖
)
2

)

⋅ 𝐾 (x
𝑖
− x)} .

(14)

Since 𝑢(x
𝑖
) takes the form in (4), our goal is to get the

estimate value of regression coefficients b = [𝑏
0
, 𝑏
2
, . . . , 𝑏

5
]
𝑇,

and it is possible to express (14) as a weighted least squares
optimization problem [23, 24].

Let

𝐸 (b) =
𝑝

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑓 (x𝑖) − 𝑢 (x𝑖)
󵄩󵄩󵄩󵄩

2

2
𝐾(x
𝑖
− x)

+ 𝛽 ((𝜕
𝑥
𝑢 (x
𝑖
) − ℎ
𝑖
)
2
+ (𝜕
𝑦
𝑢 (x
𝑖
) − V
𝑖
)
2

)

⋅ 𝐾 (x
𝑖
− x) .

(15)

And 𝐸(b) can be rewritten in matrix form as follows:

𝐸 (b) = 󵄩󵄩󵄩󵄩F − 𝜙b
󵄩󵄩󵄩󵄩

2

wx
+ 𝛽 (

󵄩󵄩󵄩󵄩H − 𝜙xb
󵄩󵄩󵄩󵄩

2

wx

+
󵄩󵄩󵄩󵄩󵄩
V − 𝜙yb

󵄩󵄩󵄩󵄩󵄩

2

wx
) = (F − 𝜙b)𝑇wx (F − 𝜙b)

+ 𝛽 ((H − 𝜙xb)
𝑇wx (H − 𝜙xb)

+ (V − 𝜙yb)
𝑇

wx (V − 𝜙yb)) ,

(16)

where

F = [𝑓 (x
1
) , 𝑓 (x

2
) , . . . , 𝑓 (x

𝑝
)]
𝑇

,

H = [ℎ
1
, ℎ
2
, . . . , ℎ

𝑝
]
𝑇

,

V = [V
1
, V
2
, . . . , V

𝑝
]
𝑇

,

wx = diag [𝐾 (x
1
− x) , 𝐾 (x

2
− x) , . . . , 𝐾 (x

𝑝
− x)] ,

𝜙 =

[
[
[
[
[
[
[
[
[

[

1 𝑥
1
− 𝑥 𝑦

1
− 𝑦 (𝑥

1
− 𝑥)
2

(𝑥
1
− 𝑥) (𝑦

1
− 𝑦) (𝑦

1
− 𝑦)
2

1 𝑥
2
− 𝑥 𝑦

2
− 𝑦 (𝑥

2
− 𝑥)
2

(𝑥
2
− 𝑥) (𝑦

2
− 𝑦) (𝑦

2
− 𝑦)
2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

1 𝑥
𝑝
− 𝑥 𝑦

𝑝
− 𝑦 (𝑥

𝑝
− 𝑥)
2

(𝑥
𝑝
− 𝑥) (𝑦

𝑝
− 𝑦) (𝑦

𝑝
− 𝑦)
2

]
]
]
]
]
]
]
]
]

]

,

𝜙x =

[
[
[
[
[
[
[
[

[

0 −1 0 −2 (𝑥
1
− 𝑥) −2 (𝑦

1
− 𝑦) 0

0 −1 0 −2 (𝑥
2
− 𝑥) −2 (𝑦

2
− 𝑦) 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 −1 0 −2 (𝑥
𝑝
− 𝑥) −2 (𝑦

𝑝
− 𝑦) 0

]
]
]
]
]
]
]
]

]

,

𝜙y =

[
[
[
[
[
[
[
[

[

0 0 −1 0 −2 (𝑥
1
− 𝑥) −2 (𝑦

1
− 𝑦)

0 0 −1 0 −2 (𝑥
2
− 𝑥) −2 (𝑦

2
− 𝑦)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 −1 0 −2 (𝑥
𝑝
− 𝑥) −2 (𝑦

𝑝
− 𝑦)

]
]
]
]
]
]
]
]

]

.

(17)
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(1) Input: noisy image 𝑓, parameter 𝜆, 𝑘, iteration number IT
(2) Initialization: 𝑢0 = 𝑓, 𝛽 = 2𝜆, calculate ∇𝑢0.
(3) For 𝑗 = 1, . . . , IT, do

Step 1. Estimate ℎ(𝑗) and V(𝑗) in (13) with 𝑢(𝑗−1)

Step 2.With ℎ(𝑗) and V(𝑗), solver for 𝑢(𝑗)
For each pixel location x, do
(i) Construct the weight matrix wx
(ii) Calculate the regression coefficients with (19) and update the estimation 𝑢(𝑗)(x) with (20)
End

Update the parameter 𝑗 = 𝑗 + 1, 𝛽 = 𝜅𝛽
End

(4) Output: smoothed image 𝑢̂.

Algorithm 1

Figure 1: From left to right, top to bottom, the noise-free images are Lena, Woman, Lady, Pepper, Eagle, Bird, Test, and House.

To get the regression coefficients b, we differentiate 𝐸(b)with
respect to b

𝜕𝐸 (b)
𝜕b

= 𝜙
𝑇wx (𝜙b − F) + 𝛽𝜙𝑇xwx (𝜙xb −H)

+ 𝛽𝜙
𝑇

ywx (𝜙yb − V)
(18)

and set it to zero; we have

b̂ = [𝜙𝑇wx𝜙 + 𝛽 (𝜙
𝑇

xwx𝜙x + 𝜙
𝑇

ywx𝜙y)]
−1

⋅ [𝜙
𝑇wxF + 𝛽 (𝜙

𝑇

xwxH + 𝜙
𝑇

ywxV)] .
(19)

Then, we can get the estimate of 𝑢(x) as follows:

𝑢̂ (x) =
5

∑

𝑛=0

𝑏
𝑛
𝑢
𝑛
. (20)

The algorithm is presented in Algorithm 1.

4. Experimental Results

In this section, we will demonstrate the performance of the
proposed method and make a comparison with several state-
of-the-art methods including NL-Mean [1], LARK [5], BLF
[6], TV [8], K-SVD [15], LGM [22], and LMMSE [29]. Eight
images are employed for test, which are shown in Figure 1
and a noisy image is coined by adding white Gaussian noise
with standard deviation of 𝜎 = 20 to the clean one. The
peak signal-to-noise ratio (PSNR) and the mean structure
similarity (MSSIM) [30] are employed as object indexes to
evaluate the image quality of the filtered images. The MSSIM
ranges from 0 to 1 and if the filtered image is identical to
the noise-free one, it is 1. Since 𝜆 is a weight directly con-
trolling the significance of𝑁(⋅), which is in fact a smoothing
parameter, a large𝜆makes the result have few edges. Since the
“House” and “Test” images are nearly piecewise constant, the
parameter 𝜆 is relatively small and set to 1.0e2, other images
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Table 1: Denoising results measured in terms of PSNR (top) and MSSIM (bottom).

Image TV LMMSE BLF LARK NL-Means K-SVD LGM Proposed
Lena 31.11 31.83 29.45 32.52 31.52 32.35 22.73 32.64
Woman 31.63 31.95 29.44 32.35 31.57 32.41 18.53 32.63
Lady 32.44 32.85 30.61 33.22 32.08 33.16 20.19 33.58
Pepper 29.91 30.29 28.09 30.54 30.11 30.74 21.19 30.77
Eagle 32.88 33.12 31.05 33.62 32.48 33.46 19.63 33.75
Bird 33.38 33.50 31.14 34.15 32.72 33.89 17.56 34.41
Test 36.54 36.30 34.62 36.39 35.58 37.20 21.15 37.25
House 34.24 34.84 31.72 35.37 34.06 35.49 22.07 35.59
Lena 0.8403 0.8474 0.7924 0.8680 0.8272 0.8616 0.7234 0.8693
Woman 0.8780 0.8760 0.8164 0.8897 0.8475 0.8848 0.6761 0.8952
Lady 0.8932 0.8921 0.8392 0.9071 0.8581 0.9012 0.7474 0.9101
Pepper 0.8637 0.8637 0.8115 0.8757 0.8446 0.8754 0.7185 0.8764
Eagle 0.8799 0.8734 0.8237 0.8903 0.8349 0.8819 0.7422 0.8919
Bird 0.8876 0.8818 0.8134 0.9048 0.8349 0.8905 0.7299 0.9084
Test 0.9090 0.9070 0.8556 0.9197 0.8607 0.9123 0.8721 0.9199
House 0.8910 0.8890 0.8246 0.9002 0.8511 0.8988 0.8099 0.9019

possess texture, and the parameter 𝜆 is 1.0e4. The parameter
𝜅 is multiplied with parameter 𝛽 in each iteration to speed up
convergence [28], and it is 1.05 in all the experiments. All the
parameters of the other methods are set as what have been
suggested to be the optimal one in the original paper.

The PSNR and MSSIM indices of the eight models on
eight images are reported in Table 1, from which one can
conclude that the proposed method performs the best in
terms of PSNR and MSSIM indices. This observation clearly
verifies the effectiveness of incorporating MLS based fidelity
term into the framework of the LGM model. It is also
clear that the proposed method performs comparably to the
LARK and K-SVD method in terms of PSNR and MSSIM;
however, the LARK method performs visually inferior to
the proposed one; let us further visually inspect the filtered
images. The results of the eight methods on House image
are listed in Figure 2, but only a part of the House image
is shown for the sake of clarity. Visually, the TV model
suffers from blocky artifacts (see Figure 2(b)); the LMMSE
method blurred image edges, in Figure 2(c). The results by
the BLF andNL-Meanmodels are somewhat foggy andmisty,
the BLF model performs more seriously (see Figure 2(d)),
and the foggy results are visually unpleasant. The result by
the LARK method is shown in Figure 2(f), where there are
serious flow-like structures around the edges. The results
by the K-SVD method and LGM method are presented in
Figures 2(g) and 2(h), respectively. There is impulse noise in
the result by the LGM method. The result by the proposed
method in Figure 2(i) is more satisfactory than the that of
the LARK method, although the corresponding PSNR and
MSSIM indices are comparable.

Since the proposed method employs the MLS based
model as fidelity term in the LGM model, as seen in Table 1

and Figure 2, this strategy not only improves the PSNR and
MSSIM indices, but also makes the filtered results closer to
the original image.There are two segments in Figure 2(a), and
the intensity profiles of the two segments of the noise-free
image and the results by the LARK, LGM, and the proposed
methods are shown in Figure 3. The intensity profiles of
the results of the LARK method possess similar trend to
the noise-free one; however, the intensity values are much
smaller than that of the original image, which implies the
LARK method reduces image contrast. The LGM method
tends to make the image intensity constant and, therefore,
cannot preserve the original profile. In contrast to the LARK
and LGM methods, the proposed one yields result very
close to, and much smoother than, the original one. This
observationmeans the proposedmethod yields smooth result
of high fidelity. Since the proposed method yields result of
high fidelity, it can preserve texture very well. The filtered
Eagle images and the corresponding residuals are shown in
Figure 4. From the residuals of the LARK, LGM, and the
proposed methods, the proposed method performs the best
on preserving texture.

In order to demonstrate the performance of the proposed
method at different noise level, the Pepper image is contam-
inated by additive white Gaussian noise with the standard
deviation of 20, 30, and 40, and the eight models are applied
to the noisy Pepper images.ThePSNR andMSSIM indices are
reported in Table 2 (see Table 1 when noise deviation is 20).
The filtered images when noise deviation is 40 are shown in
Figure 5. From Table 2, it is clear that the proposed method,
LARK, and K-SVD perform comparably, but the proposed
method is the best. On the other hand, the results of the pro-
posed method are visually the best since the LARK method
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Demonstration and comparison on the House image: (a) noisy image and filtered images by (b) the TV model, (c) the LMMSE,
(d) the BLF model, (e) the NL-Mean model, (f) the LARK model, (g) the K-SVD model, (h) the LGMmodel, and (i) proposed model.

suffers fromflow-like artifacts and theK-SVDmethod suffers
from artifacts due to the inaccurate sparse representation.

5. Conclusion

In this paper, we have proposed an improvement of the 𝐿
0

gradient minimization (LGM) model. The proposed model

is coined by introducing the MLS based fidelity into LGM
model and the fidelity term is an exemplar of themoving least
squaremethod using steering kernel (LARK).Themain result
is that the proposed method combines the advantages of the
LGM and LARK, so that the proposed model can simul-
taneously preserve texture and resist the flow-like artifacts.
Experiments have been conducted on both synthetic and real



8 Mathematical Problems in Engineering

80

100

120

140

160

180

200

Pi
xe

l i
nt

en
sit

y

160 170 180 190 200 210150
Pixel position on the selected line 1

Noiseless image
KR

LGM
Proposed

(a)

90

85

80

75

70

65

60

55

45

50

Pi
xe

l i
nt

en
sit

y

290 300 310 320 330 340280
Pixel position on the selected line 2

Noiseless image
KR

LGM
Proposed

(b)

Figure 3: Intensity profiles of two segments shown in blue in Figure 2(a): (a) line 1 and (b) line 2.

(a) (b) (c)

Figure 4: Filtered images (top) and the corresponding residual (bottom) of the (a) LARK, (b) LGM, and (c) proposed method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Filtered “Pepper” image with white Gaussian noise of variance 40. (a) Noisy image. Results by the (b) TV, (c) LMMSE, (d) BLF, (e)
LARK, (f) NL-Mean, (g) K-SVD, (h) LGM, and (i) proposed method.

images, and comparisons have been launched with the classi-
cal and state-of-the-art models such as the TV, LMMSE, NL-
Mean, BLF, LARK, K-SVD, and LGMmodels.We have evalu-
ated these models from PSNR andMSSIM indices and visual
inspection. Overall, the proposed model yields promising
results and we believe that theMLS basedmethod can also be
combined with other variational methods for image filtering.

To note, the overall computational load of the proposed
method is heavier than that of the model in [22] since the
steering kernel has to be calculated.
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