536 research outputs found

    Photocatalytic Hydrogen Evolution from Sub-Stoichiometric Colloidal WO3-xNanowires

    Get PDF
    We report direct photocatalytic hydrogen evolution from substoichiometric highly reduced tungsten oxide (WOx) nanowires (NWs) using sacrificial alcohol. WOx NWs are synthesized via nonaqueous colloidal synthesis with a diameter of about 4 nm and an average length of about 250 nm. As-synthesized WOx NWs exhibit a broad absorption across the visible to infrared regions attributed to the presence of oxygen vacancies. The optical band gap is increased in these WOx NWs compared to stoichiometric bulk tungsten oxide (WO3) powders as a result of the Burstein\u2013Moss shift. As a consequence of this increase, we demonstrate direct photocatalytic hydrogen production from WOx NWs through alcohol photoreforming. The stable H2 evolution on platinized WOx NWs is observed under conditions in which platinized bulk WO3 and bulk WO2.9 powders either do not show activity or show very low rates, suggesting that increased surface area and specific exposed facets are key for the improved performance of WOx NWs. This work demonstrates that control of size and composition can lead to unexpected and beneficial changes in the photocatalytic properties of semiconductor materials

    Angiotensin-Converting Enzyme (ACE) Gene Insertion/Deletion Polymorphism and ACE Inhibitor-Related Cough: A Meta-Analysis

    Get PDF
    Objective: An insertion/deletion (I/D) variant in the angiotensin-converting enzyme (ACE) gene was associated with ACE inhibitor (ACEI)-related cough in previous studies. However, the results were inconsistent. Our objective was to assess the relationship between the ACE I/D polymorphism and ACEI-related cough by meta-analysis and to summarize all studies that are related to ACE I/D polymorphism and ACEI-cough and make a summary conclusion to provide reference for the researchers who attempt to conduct such a study. Methods: Databases including PubMed, EMbase, Cochrane Library, and China National Knowledge Infrastructure, were searched for genetic association studies. Data were extracted by two independent authors and pooled odds ratio (OR) with 95% confidence interval (CI) was calculated. Metaregression and subgroup analyses were performed to identify the source of heterogeneity. Results: Eleven trials, including 906 cases (ACEI-related cough) and 1,175 controls, were reviewed in the present meta-analysis. The random effects pooled OR was 1.16 (95% CI: 0.78-1.74, p = 0.46) in the dominant model and 1.61 (95% CI: 1.18-2.20, p = 0.003) in the recessive model. Heterogeneity was found among and within studies. Metaregression indicated that the effect size was positively associated with age and negatively associated with follow-up duration of ACEI treatment. Subgroup analysis revealed a significant association between ACE I/D polymorphism and ACEI-related cough in studies with mean age >60 y, but not in studies with mean age 2 mo or in studies in Caucasians. No heterogeneity was detected in these two subgroups. Conclusions: Synthesis of the available evidence supports ACE I/D polymorphism as an age-dependent predictor for risk of ACEI-related cough

    Sensitivity to tumor development by TALEN-mediated Trp53 mutant genes in the susceptible FVB/N mice and the resistance C57BL/6 mice

    Get PDF
    Abstract Background This study was undertaken to compare the sensitivities of mice strains during tumor induction by transcription activator-like effector nucleases (TALEN)-mediated Trp53 mutant gene. Alterations of their tumorigenic phenotypes including survival rate, tumor formation and tumor spectrum, were assessed in FVB/N-Trp53em2Hwl/Korl and C57BL/6-Trp53em1Hwl/Korl knockout (KO) mice over 16weeks. Results Most of the physiological phenotypes factors were observed to be higher in FVB/N-Trp53em2Hwl/Korl KO mice than C57BL/6-Trp53em1Hwl/Korl KO mice, although there were significant differences in the body weight, immune organ weight, number of red blood cells, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), platelet count (PLT), total bilirubin (Bil-T) and glucose (Glu) levels in the KO mice relative to the wild type (WT) mice. Furthermore, numerous solid tumors were also observed in various regions of the surface skin of FVB/N-Trp53em2Hwl/Korl KO mice, but were not detected in C57BL/6-Trp53em1Hwl/Korl KO mice. The most frequently observed tumor in both the Trp53 KO mice was malignant lymphoma, while soft tissue teratomas and hemangiosarcomas were only detected in the FVB/N-Trp53em2Hwl/Korl KO mice. Conclusions Our results indicate that the spectrum and incidence of tumors induced by the TALEN-mediated Trp53 mutant gene is greater in FVB/N-Trp53em2Hwl/Korl KO mice than C57BL/6-Trp53em1Hwl/Korl KO mice over 16weeks

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    Etiologic Classification Criteria of ARCO on Femoral Head Osteonecrosis Part 1: Glucocorticoid-Associated Osteonecrosis.

    Get PDF
    BACKGROUND: Glucocorticoid usage, a leading cause of osteonecrosis of the femoral head (ONFH), and its prevalence was reported in 25%-50% of non-traumatic ONFH patients. Nevertheless, there have been no unified criteria to classify glucocorticoid-associated ONFH (GA-ONFH). In 2015, the Association Research Circulation Osseous addressed the issue of developing a classification scheme. METHODS: In June 2017, a task force was set up to conduct a Delphi survey concerning ONFH. The task force invited 28 experts in osteonecrosis/bone circulation from 8 countries. Each round of the Delphi survey consists of questionnaires, analysis of replies, and feedback reports to the panel. After 3 rounds of the survey, the panel reached a consensus on the classification criteria. The response rates were 100% (Round 1), 96% (Round 2), and 100% (Round 3), respectively. RESULTS: The consensus on the classification criteria of GA-ONFH included the following: (1) patients should have a history of glucocorticoid use >2 g of prednisolone or its equivalent within a 3-month period; (2) osteonecrosis should be diagnosed within 2 years after glucocorticoid usage, and (3) patients should not have other risk factor(s) besides glucocorticoids. CONCLUSION: Association Research Circulation Osseous established classification criteria to standardize clinical studies concerning GA-ONFH

    Coordinatively Saturated Tris(oxazolinyl)borato Zinc Hydride-Catalyzed Cross Dehydrocoupling of Silanes and Alcohols

    Get PDF
    The four-coordinate zinc compound ToMZnH (1, ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate) catalyzes selective alcoholysis of substituted hydrosilanes. The catalytic reaction of PhMeSiH2 and aliphatic alcohols favors the monodehydrocoupled product PhMeHSi–OR. With the aryl alcohol 3,5-C6H3Me2OH, the selectivity for mono(aryloxy)hydrosilane PhMeHSiOC6H3Me2 and bis(aryloxy)silane PhMeSi(OC6H3Me2)2 is controlled by relative reagent concentrations. Reactions of secondary organosilanes and diols provide cyclic bis(oxo)silacycloalkanes in high yield. The empirical rate law for the ToMZnH-catalyzed reaction of 3,5-dimethylphenol and PhMeSiH2 is −d[PhMeSiH2]/dt = k′obs[ToMZnH]1[3,5-C6H3Me2OH]0[PhMeSiH2]1 (determined at 96 °C) which indicates that Si–O bond formation is turnover-limiting in the presence of excess phenol

    Over-expression of Adenine Nucleotide Translocase 1 (ANT1) Induces Apoptosis and Tumor Regression in vivo

    Get PDF
    Background: Adenine nucleotide translocase (ANT) is located in the inner mitochondrial membrane and catalyzes the exchange of mitochondrial ATP for cytosolic ADP. ANT has been known to be a major component of the permeability transition pore complex of mitochondria and contributes to mitochondria-mediated apoptosis. Human ANT has four isoforms (ANT1, ANT2, ANT3, and ANT4), and the expression of the ANT isoforms is variable depending on the tissue and cell type, developmental stage, and proliferation status. Among the isoforms, ANT1 is highly expressed in terminally-differentiated tissues, but expressed in low levels in proliferating cells, such as cancer cells. In particular, over-expression of ANT1 induces apoptosis in cultured tumor cells. Methods: We applied an ANT1 gene transfer approach to induce apoptosis and to evaluate the anti-tumor effect of ANT1 in a nude mouse model. Results: We demonstrated that ANT1 transfection induced apoptosis of MDA-MB-231 cells, inactivated NF-κB activity, and increased Bax expression. ANT1-inducing apoptosis was accompanied by the disruption of mitochondrial membrane potential, cytochrome c release and the activation of caspases-9 and -3. Moreover, ANT1 transfection significantly suppressed tumor growth in vivo. Conclusion: Our results suggest that ANT1 transfection may be a useful therapeutic modality for the treatment of cancer

    Retrospective analyses of cisplatin-based doublet combination chemotherapy in patients with advanced gastric cancer

    Get PDF
    <p>Abstract</p> <p>Backgrounds</p> <p>Cisplatin-based chemotherapy, in combination with fluoropyrimidines or taxanes, have demonstrated efficacy against advanced gastric cancer (AGC). This retrospective study was performed with the data obtained from our cancer chemotherapy registry and eight another cancer centers.</p> <p>Methods</p> <p>In 2008, a total of 283 AGC patients were treated with cisplatin-based doublet chemotherapy in the first-line setting: capecitabine plus cisplatin (XP, n = 77), S-1 plus cisplatin (SP, n = 97), taxanes (docetaxel, paclitaxel) plus cisplatin (TP, n = 72), and 5-fluorouracil plus platinum (FP, n = 37). The primary endpoint of this study was overall survival (OS) and the secondary endpoints were safety, response rate and progression-free survival (PFS).</p> <p>Results</p> <p>The median age was 54 years with a range of 28-78 years and median delivered number of chemotherapy cycles were XP: 4, SP: 5, TP: 5 and FP: 5, respectively. Objective tumor responses (38%; 95% CI, 32-43%) were 40% for XP, 42% for SP, 36% for DP, and 24% for FP. The estimated median PFS was 4.5 months (95% CI, 3.6-5.4 months) and the median OS was 12.3 months (95% CI, 10.8-13.7 months). No statistically significant difference was found between each regimen used as first-line chemotherapy. At multivariate analysis, independent prognostic parameters for OS were prior gastrectomy, peritoneal dissemination, performance status and hemoglobin level</p> <p>Conclusion</p> <p>All of the cisplatin-based doublet chemotherapy regimens appear to be active as first-line chemotherapy for AGC. With better patient selection according to clinical parameters and molecular markers, clinical outcomes of AGC patients in first-line setting can be improved.</p

    Integrated Expression Profiling and Genome-Wide Analysis of ChREBP Targets Reveals the Dual Role for ChREBP in Glucose-Regulated Gene Expression

    Get PDF
    The carbohydrate response element binding protein (ChREBP), a basic helix-loop-helix/leucine zipper transcription factor, plays a critical role in the control of lipogenesis in the liver. To identify the direct targets of ChREBP on a genome-wide scale and provide more insight into the mechanism by which ChREBP regulates glucose-responsive gene expression, we performed chromatin immunoprecipitation-sequencing and gene expression analysis. We identified 1153 ChREBP binding sites and 783 target genes using the chromatin from HepG2, a human hepatocellular carcinoma cell line. A motif search revealed a refined consensus sequence (CABGTG-nnCnG-nGnSTG) to better represent critical elements of a functional ChREBP binding sequence. Gene ontology analysis shows that ChREBP target genes are particularly associated with lipid, fatty acid and steroid metabolism. In addition, other functional gene clusters related to transport, development and cell motility are significantly enriched. Gene set enrichment analysis reveals that ChREBP target genes are highly correlated with genes regulated by high glucose, providing a functional relevance to the genome-wide binding study. Furthermore, we have demonstrated that ChREBP may function as a transcriptional repressor as well as an activator
    corecore