59 research outputs found

    Contrasting Textural and Chemical Signatures of Chromitites in the Mesoarchaean Ulamertoq Peridotite Body, Southern West Greenland

    Get PDF
    Peridotites occur as lensoid bodies within the Mesoarchaean orthogneiss in the Akia terrane of Southern West Greenland. The Ulamertoq peridotite body is the largest of these peridotites hosted within the regional orthogneiss. It consists mainly of olivine, orthopyroxene, and amphibole-rich ultramafic rocks exhibiting metamorphic textural and chemical features. Chromitite layers from different localities in Ulamertoq show contrasting characteristics. In one locality, zoned chromites are hosted in orthopyroxene-amphibole peridotites. Compositional zonation in chromites is evident with decreasing Cr and Fe content from core to rim, while Al and Mg increase. Homogeneous chromites from another locality are fairly uniform and Fe-rich. The mineral chemistry of the major and accessory phases shows metamorphic signatures. Inferred temperature conditions suggest that the zoned chromites, homogeneous chromites, and their hosts are equilibrated at different metamorphic conditions. In this paper, various mechanisms during the cumulus to subsolidus stages are explored in order to understand the origin of the two contrasting types of chromites

    Geochemical characteristics of back-arc basin lower crust and upper mantle at final spreading stage of Shikoku Basin: an example of Mado Megamullion

    Get PDF
    AbstractThis paper explores the evolutional process of back-arc basin (BAB) magma system at final spreading stage of extinct BAB, Shikoku Basin (Philippine Sea) and assesses its tectonic evolution using a newly discovered oceanic core complex, the Mado Megamullion. Bulk and in-situ chemical compositions together with in-situ Pb isotope composition of dolerite, oxide gabbro, gabbro, olivine gabbro, dunite, and peridotite are presented. Compositional ranges and trends of the igneous and peridotitic rocks from the Mado Megamullion are similar to those from the slow- to ultraslow-spreading mid-ocean ridges (MOR). Since the timing of the Mado Megamullion exhumation corresponds to the very end of the Shikoku Basin opening, the magma supply was subdued and highly episodic, leading to extreme magma differentiation to form ferrobasaltic, hydrous magmas. In-situ Pb isotope composition of magmatic brown amphibole in the oxide gabbro is identical to that of depleted source mantle for mid-ocean ridge basalt (MORB). In the context of hydrous BAB magma genesis, the magmatic water was derived solely from the MORB source mantle. The distance from the back-arc spreading center to the arc front increased away through maturing of the Shikoku Basin to cause MORB-like magmatism. After the exhumation of Mado Megamullion along detachment faults, dolerite dikes intruded as a post-spreading magmatism. The final magmatism along with post-spreading Kinan Seamount Chain volcanism were introduced around the extinct back-arc spreading center after the opening of Shikoku Basin by residual mantle upwelling

    Primitive layered gabbros from fast-spreading lower oceanic crust

    Get PDF
    Three-quarters of the oceanic crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the sea floor. Despite the importance of these rocks, sampling them in situ is extremely challenging owing to the overlying dykes and lavas. This means that models for understanding the formation of the lower crust are based largely on geophysical studies and ancient analogues (ophiolites) that did not form at typical mid-ocean ridges. Here we describe cored intervals of primitive, modally layered gabbroic rocks from the lower plutonic crust formed at a fast-spreading ridge, sampled by the Integrated Ocean Drilling Program at the Hess Deep rift. Centimetre-scale, modally layered rocks, some of which have a strong layering-parallel foliation, confirm a long-held belief that such rocks are a key constituent of the lower oceanic crust formed at fast-spreading ridges. Geochemical analysis of these primitive lower plutonic rocks-in combination with previous geochemical data for shallow-level plutonic rocks, sheeted dykes and lavas-provides the most completely constrained estimate of the bulk composition of fast-spreading oceanic crust so far. Simple crystallization models using this bulk crustal composition as the parental melt accurately predict the bulk composition of both the lavas and the plutonic rocks. However, the recovered plutonic rocks show early crystallization of orthopyroxene, which is not predicted by current models of melt extraction from the mantle and mid-ocean-ridge basalt differentiation. The simplest explanation of this observation is that compositionally diverse melts are extracted from the mantle and partly crystallize before mixing to produce the more homogeneous magmas that erupt

    フィリピン海パレスベラ海盆のゴジラムリオンの構造発達

    No full text
    博士(理学)doctoral創造科学技術大学院静岡大学甲第577号ET

    CRUISE REPORT R/V Shinsei-Maru Cruise KS-21-16

    No full text
    調査海域: 南西諸島 / Area: The Nansei Islands ; 期間: 2021年8月2日~2021年8月9日 / Operation Period: August 2, 2021~August 9, 2021http://www.godac.jamstec.go.jp/darwin/cruise/shinsei_maru/ks-21-16/

    クロミタイト海底掘削試料(ODP Leg 209 MAR 15°20’N FZ)中に見られる高温変成作用による変化

    Get PDF
    A new class of models for inhomogeneous spatial point processes is introduced. These locally scaled point processes are modifications of homogeneous template point processes, having the property that regions with different intensities differ only by a scale factor. This is achieved by replacing volume measures used in the density with locally scaled analogues defined by a location-dependent scaling function. The new approach is particularly appealing for modelling inhomogeneous Markov point processes. Distance-interaction and shot noise weighted Markov point processes are discussed in detail. It is shown that the locally scaled versions are again Markov and that locally the Papangelou conditional intensity of the new process behaves like that of a global scaling of the homogeneous process. Approximations are suggested that simplify calculation of the density, for example, in simulation. For sequential point processes, an alternative and simpler definition of local scaling is proposed
    corecore