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Abstract 

A new class of models for inhomogeneous spatial point processes 
is introduced. These locally scaled point processes are modifications 
of homogeneous template point processes, having the property that 
regions with different intensity differ only by a scale factor, i.e. appear 
to be scaled versions of the template point process. This is achieved 
by replacing volume measures used in the density with locally scaled 
analogues defined by a location dependent scaling function. If the scal­
ing function is constant, then local scaling coincides with global scaling 
by a constant factor. The new approach is particularly appealing for 
modelling inhomogeneous Markov point processes. Distance-interaction 
and shot noise Markov point processes are discussed in detail. It is 
shown that the locally scaled versions are again Markov and that locally 
the Papangelou conditional intensity of the new process behaves like 
that of a global scaling of the homogeneous process. Approximations 
are suggested that simplify calculation of the density e.g. in simulation. 
For sequential point processes, an alternative and simpler definition of 
local scaling is proposed. 
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1. Introduction 

Point patterns with non-homogeneous intensity are observed quite frequently 

in nature and technology. For example, the number of trees per unit area in a 

forest depends on environmental conditions and therefore maps showing tree 

locations usually look inhomogeneous. In plant and animal tissue, cell size and, 
correspondingly, cell number often depend on the distance to the boundary of 

an organ. '.\[any modem materials are designed with structural inhomogeneity, 

imitating natural structures in order to improve functional properties. An 

example is the bronze sinter filter shown in Fig. 1. The data have earlier 

been analysed in Hahn et al. [5]. The filter consists of almost spherical bronze 
particles with diameters that decrease along an ax.i.s which marks the filtering 

direction. Since the particles are densely packed, the number of particles per 

unit volume increases as the diameters decrease. This is also observable on 

sections parallel to the directions of inhomogeneity: The centers of the particle 

section profiles form an inhomogeneous point pattern. 

D 
D . 

FIGURE 1: Left part: Section of a bronze sinter filter with a gradient in particle 
size and number. Right part: centers of the particle profiles. Two 
enlargemPuts from top and bot.tom part. containing about the same 

number of points, show similar geometry. 

While it is easy to model inhomogeneous point patterns with independently 

positioned points by inhomogeneous Poisson point processes, situations as 
shown in Fig. 1 require more sophisticated approaches. This pattern is char­

acterized by repulsive interaction between the points due to the fact that it 
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results from a packing of spheres. The packing is of similar volume fraction, 

and similar geometry in regions with larger and with smaller sphere diameters. 

Therefore, regions with large sphere diameters look like scaled versions of 

regions with small diameters and vice versa. A similar effect can often be 

observed in nature, e.g. in plant communities where number density is governed 

by environmental conditions. For example desert plants tend to form regular 

patterns with varying scale, such that distances between plants are smaller in 

densely covered regions. Such point patterns appear also homogeneous up to 
a local scale factor. 

In recent years, various models have been suggested for inhomogeneous point 

processes with interaction. Since Markov point processes are very useful for 

modelling interaction in homogeneous point patterns it is natural that they are 

used as starting points for inhomogeneous models. The survey by Jensen and 

Nielsen [8] discusses three ways of introducing inhomogeneity into a \!arkov 

model. As will be explained in more detail in Section 2, homogeneous \!arkov 

point processes are defined by a density with respect to the unit rate Poisson 

point process. A straightforward idea is therefore to define an inhomogeneous 

process by the same density (up to a constant factor) but with respect to 

an inhomogeneous Poisson point process (Stoyan and Stoyan [15], Ogata and 

Tanemura [13]). Inhomogeneity can also be obtained by location dependent 

thinning (Baddeley et al. [1]), or by transformation of a homogeneous Markov 

point process (.Jensen and Nielsen [7]). 

In these three cases, the local geometry of the point pattern changes with in­

tensity. This is illustrated in Fig. 2, which shows realizations of inhomogeneous 

hard core point processes obtained by the three methods. In order to obtain 

patterns that appear homogeneous up to a scale factor, range and strength of 

interaction have to be adapted to intensity. However this is not accomplished 

by the first approach where the interaction between points does not depend 

on their locations, cf. Fig. 2a. Thinning on the other hand in general destroys 

the interaction structure. This leads to a Poisson like appearance of sparse 

regions, see Fig. 2b. Transformation of coordinates finally not only introduces 

inhomogeneity but also local anisotropy, as shown in Fig. 2c. Therefore these 

three approaches are not suitable for modelling situations as given in Fig. 1. 

In the present paper we propose alternative inhomogeneous point process 

models that aim to preserve local geometry. As in the three approaches 

discussed above, the inhomogeneous model is obtained by modifying a ho­

mogeneous "template" process that yields the interaction. The idea is that 
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a) r 
FIGURE 2: Inhomogeneous hard core point patterns obtained by a) defining the 

density with respect to an inhomogeneous Poisson point process, b) 
inhomogeneous independent thinning, c) transformation of coordinates. 
Note that dense and sparse regions differ in geometry. The parameters 
were chosen such that the processes have similar intensity as the example 
of Figure 1. 

inhomogeneity is obtained by scaling the template process with a location 
dependent scaling factor. A large scaling factor hereby results in low intensity 
and large interaction distances, whereas a small scaling factor yields high 
intensity and small interaction range. In regions with constant scaling factor 
the point process should locally behave like a scaled version of the template, 
see Fig. 3. 

The method and results presented in this paper are applicable to homo­
gerlE'ous template processes that are given by a density with respect to a 
homogeneous Poissou poi11t process: however the main emphasis will be on 
\!arkov poi11t processes. The definition of \Iarkov point processes and other 
prerequisites are recalled i11 Section 2. 

Calculating the density function of a point process for a give11 point pattern 
usually implies evaluating distances, areas, etc. The local scaling model pro­
posed in Section 3 changes the way such quantities are rrwasurPd according to 
a location dependeut scaling function. 

Sectio11s 4 and 5 give a closer look on the important classes of distauce­
interaction and shot noise processes. Iu particular we show that locally scaled 
:V!arkov point processes are again :\!arkov, now with respect to a location 
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[] 

FIGURE 3: Homogeneous template hard core process (left part) and inhomogeneous 
process obtained by local scaling. Enlargements from dense and sparse 
regions of the inhomogeneous pattern look similar to the template 
pattern. 

dependent relation. Useful approximations of local scaling simplifying cal­
culations e.g. in simulation are presented in Section 6. 

For the class of sequential point processes, another approach to obtain local 
scaling by means of conditional intensities is suggested in Section 7. 

The paper concludes with a critical discussion. 

2. Prerequisites 

Let JRk denote the set of all full-dimensional bounded subsets of JR.k and 
write Bk for the Borel a-algebra on JR.k. We consider finite point processes X 
on sets X E JRk. A point process X on X is a random variable taking values 
in flx, the set of all finite subsets X = {xi, • · · , Xn} of X, equipped with the 
smallest a-algebra for which the number of points placed in a Borel set B ~ X 
is a random variable. 

We will concentrate on point processes X that have a density f x with respect 
to the restriction of the unit rate Poisson point process II to X. A point process 
X on X is called homogeneous if f x is the restriction to X of a translation 
invariant function defined on all finite subsets of JR.k, see [12]. 

Markov point processes in the sense of Ripley and Kelly [14] are particularly 
useful for modelling point patterns with interaction. They are defined with 
respect to a symmetric and reflexive relation,..., on X. Two points x1,x2 EX 
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are said to be neighbours if Xt "" x2, and a finite subset x C X is called a 
clique if all points in x are neighbours. 

By the Hammersley-Clifford theorem (Ripley and Kelly [14]), a Ripley-Kelly 
).larkoY point process X has density with respect to the unit rate Poisson point 
process of the form 

fx(x) =IT ip(y), x E 11,y, (1) 
y<;;x 

where 'P is an interaction function, i.e. <p(y) = 1 when the set y is not a clique. 
We will always assume that the interaction function 'P is defined on all finite 
subsets of IRk. A :\farkov point process X is thereby homogeneous if <p is 
translation invariant (for a proof see Nielsen [11, p. 29]). 

For a Markov point process, the Papangelou conditional intensity 

{
Ix (xu{x)l 

.Xx(x Ix) = 0 !x(x) ' 
/x(x) > 0, 

otherwise, 

x if,x, 

depends only on those points in x which are neighbours of x. If we let dx be an 
infinitesimal region around x and vk(dx) the k-dimensional volume (Lebesgue 
measure) of dx. then ,\(x I x)vk(dx) can be interpreted as the conditional proba­
bility of finding a point from the process in dx given the configuration elsewhere 
is x, cf. e.g. Van Lieshout [9]. 

Before defining local scaling of point processes let us consider global scaling 
with a constant factor c > 0. A8 a transformation of coordinates, global 
scaling maps a point process X on X to a process Xc = cX on the set 
c:\:' = {.r: .r/c E .l:'}, see also Jensen and Nielsen [7]. 

The uuit rate Poisson point process n on X with intensity measure 11k is 
transformed iuto a Poisson point process nc Oil cX with intensity measure 
c ·--kl'k. 

Let fx be the density of the original process with respect to CT. Then the 
scaled process x,. has density l~} with respect ton(', 

f~}(x) = fx(x/c). (2) 

(The superscript (c) in Jk; is used to indicate that the dPnsitY is with rPspect 
to fie instead of with respect to II.) The conditional intt'nsity associated with 
/ (.cl • 

Xc IS 

(c) , (:r I x) Ax (.r· 'x) = .Ax -. .. ..... 
c (' (' 

(3) 
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The density of X,, with respect to II is 

where n(x) is the number of points in x. 

3. Local scaling of homogeneous point processes 

In this section. we give a general clefinition of a locally scaled version of a 
homogeneous template process. 

The concept of scale invariance plays a crucial role in the definition. This 
concept relates to global scaling with a constant factor c > 0. :\!ote that under 
scaling with factor c, a measure µ on (JR\ Bk) is transformecl into µc where 
µc(A) = µ(c-t A), A E Bk. 

Definition 1. Let g(x; µ*) he a real-valued measurable function clefined on 
nIR •, depending on a set µ* = (p 1 , · · · , pm) of measures on (JR k, Bk). The 
function g is called scale 'invariant if for all x E rlJRk and all c > 0 

g(cx; p;) = g(x; fi'), (4) 

where p~ = (µ~,··· ,fl~'). 

The classical homogeneous point process models that appear in the spa­
tial statistics literature have a density which is the restriction to nx of a 
scale-invariant function g(·; p'), where µ' = 11' = (v0, · · · , 11k) is the set of 
d-dimensional volume (Hausdorff) measures z;d in IR.k, d = 0, 1, · · · , k. A 
comprehensive set of examples will be given in the sections to follow. Recall 
that 11° is the counting measure, thus v0 (x) = n(x), and 11 1 is the length 
measure in IRk. Note also that 11~(A) = vd(c-LA) = c-dvd(A), A. E Bk· 

Under local scaling, the constant scaling factor c is replaced by a non constant 
location dependent scaling function c : IRk -+ IR+. The globally scaled 
measures v~ can easily be extended to this case. 

Definition 2. Let c be a positive Borel measurable function on ffik. Then the 
locally scaled d-dirnensional volnme mea.mre 1;~ is defined by 

(5) 

for all A E Bk· 
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In the following, we will assume that c is bounded from below and above, 

i.e. there exist 0 < <;;. S: i' < XJ such that 

This assumption implies in particular that vg(A) < XJ whenever vd(A) < XJ. 

\Ve can now present the definition of locally scaled point processes. 

Definition 3. Let X be a homogeneous point process on X, with density fx 
with respect to TI of the form 

f x(x) x g(x; v'), x E flx, 

where g is scale invariant. Let c be a positive, Borel measurable function in IR.k 

and let IIc be the Poisson point process with the locally scaled volume measure 

v~ as intensity measure. Let X' E JIBk be arbitra1y and suppose that g(-; v;) is 

integrable on Slx, with respect to IIc. A locally scaled point process Xc on X' 

with template X is defined by the following density with respect to Tic, 

(6) 

where v; is the set of locally scaled volume measures. 

If c: IR.k-+ IR.+ is constant, c(u) = c, say, then the density with respect to 

IIc of the scaled process on X' = cX becomes 

f (c)( ) ( ') ( -1 *) x, x ex g x; vc = g c x; v , 

Local scaling with a constant scaling function is thereby equivalent to global 

scaling. In the general case where c is non constant, local scaling does not 

necessarily correspond to a mapping. Therefore there is no natural choice of 

X' which is related to X, and the set X' can be arbitrary. In particular, we 

may choose X' = X. Note that the density of the locally scaled process Xc 

with respect to the unit rate Poisson point process II is 

h(x) ex IT c(x)-k · J~;(x). (7) 
xEx 

The locally scaled processes are Markov with respect to a suitably chosen 

relation ~,,, which in general is different from the template relation ~, see 

the Appendix A. Local scaling of two general '.'vfarkov model classes, distance­

interaction processes and shot noise processes, is discussPd in detail in Sections 
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4 and 5. For these classes, conditions on the scaling function which ensure 
integrability of g(·, v;) will be given, and it will be shown that the Papangelou 
conditional intensity of the locally scaled process, 

{
1r;(xu {x}) 

A~;(xlx)= 
0 

1r;(x) ' 

satisfies a local analogue of (3), 

1<;;(x) > 0, 

otherwise, 

(8) 

(9) 

if c is constant in a ~c-neighbourhood of x. The locally scaled processes 
thereby behave locally like a scaled version of the template process and the 
local geometry is preserved. In particular, if the template is locally isotropic 
in the sense that Ax (x I ·) is invariant under rotations around x, then so is the 
locally scaled process. Indeed, let Rx be a rotation around x. Then 

A~;(x I Rxx) = Ax c~) I~:~) =AX c~) I Re(~) c~))) = 

>-x ( c~) I c~)) =A~; (x Ix). 

4. Distance-interaction processes 

(10) 

Consider the important class of distance-interaction processes X, where 
higher order interactions are functions of pairwise distances. Thus these point 
processes have densities of the form 

fx(x) =IT cp(D(y)), (11) 
y,;x 

where D(y) = y if n(y) < 2, and for n(y)?: 2 

D(y) = {v1([u, v]): {u, v} i;;; y, u "fo v} 

denotes the set of all pairwise distances of points in y, and [u, v] is the line 
segment connecting the points u and v. Distance-interaction processes include 
pairwise interaction processes, such as the hard-core process and the Strauss 
process, as well as higher order processes, e.g. the triplets process (Geyer [4]). 



10 U. HAHN ET AL. 

Assume that ip({x}) = .B and that ip(D(y)) = 1 for n(y) 2: 2 unless 
v1 ([u, v]) :S r for all { u, v} ~ y. The process X is thereby homogeneous 
and :\farkov with respect to the relation 

According to (11), 

fx(x) oc g(x; v•), x E flx, 

where 
g(x; 11*) = f3"0(x) II ip( {v1 ([u, v]) : {u, v} ~ y, u # v}) 

yi;;2x 

and y ~2 x is short for {y ~ x : v0 (y) 2: 2}. The function g is clearly scale 
invariant since for any constant c > 0 

II ip({v~([u,v]): {u,v} ~ y}) 

= II ip({111([u,v]): {u,v} ~ y}). 
Y£2x 

If ip(D(y)) :S 1 for n(y) 2: 2, then X is repulsive since each cliquey ~ x 
contributes a penalty ip(D(y)) to the density. In this case, 

g(x; 11;) :S 13n(x) 

for any scaling function c: IR.k-+ IR.+. Hence, g(·; 11;) is integrable on flx, for 
any X' E W, and therefore, locally scaled versions of such processes do exist. 
Otherwise, integrability has to be proved case by case and may require certain 
restrictions on the scaling function c. The locally scaled process has a density 
of the form 

!fJ(x) ex /3n(x) II ip(Dc(Y)), X E flx,, 
Y~2x 

where 
Dc(Y) = {11~([u, v]): {u, v} ~ y u # v}. 

Example (Strauss process). A Strauss process X on X ~ IR.k with intensity 
parameter f3 > 0, interaction parameter 'Y E [O, 1] and interaction distance r 
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has density 

# 
fx(x):x:8n(x)'Y'(xl, s(x)= L l(v 1 ([u,v]):::;r), xEDx, 

{u,u}c;x 

11 

where s(x) is the number of r-close pairs in x (Strauss [16]). (The superscript 
#in the summation indicates that u and v are different.) For ~r = 0 we obtain 
the hard core process, for r = 1 the Poisson point process with intensity /'i. 
The locally scaled Strauss process has density 

i 
r~l(x)cx:;'J"(x)~r''(x), sc(x)= L l(v~([v,v])~r), xErlx" 

{u,u}<;:x 

Figure 4 shows a realization; for details see the figure caption . 

. ':; ·. 

.. . . . 

FIGURE 4: Left: Homogeneous template Strauss process X on X = [-1, 1 ]2 with 
parameters (3 = 200, 1' = 0.1, r = 0.1. Right: Inhomogeneous Strauss 
prncess Xc on X' = [-I, 1]2 obtained by local scaling of X with 
c(u) = ll.1 + llull 2 -

The locally scaled process is ~Iarkov with respect to the relation 

u ~ v ~ v~([u, v]) '.'.::'. r. 

Thus, the shape of the neighbourhood, 

8,(:c) = {y: v~([:r, y]) ~ r} = b,(:r, r), 

in the locally scaled process depends 011 the scaling function r:. It is not 
necessarily eonvex but always star shaped, cf. Figure 5. A neighbourhood 
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FIGURE 5: Neighbourhoods of four points in a locally scaled distance-interaction 

process, with scale factor c = 1 in the left half and c = 2 in the right half 

of the domain. 

8,:(:r) is called star-shaped if it is star-shaped with respect to :c, which means 

that u E Bc(x) => [x, u] <;:: Bc(x). 
lil regions where c is constant, the neighbourhood Bc(x) = bc(:r, r) is ball 

shaped and thus similar to the neighbourhood B(x) = b(:c, r) in the homoge­

neous and isotropic template, cf. Figure 5. :\fore precisely, we have 

Proposition 1. If c(u) = c for· all u E b(x, er), then 

bc(x, r) = b(:c, er). 

Prnof. 'vVith straightforward calculations it can be shown that v E b(:r, er) 
implies v E bc(x,r) and v It b(x,er) implies v It bc(x:,r). 

Locally scaled distance-intf~raction processes have the desired property that 

in regions where c is constant the process behaves like a scaled version of the 

template process. 

Proposition 2. Let X be a distance-'intemction po'irit process with conditional 

intens·ity Ax. Suppose c(u) = c for all a E b(x, er). Then the conditional 

intensity of the locally scaled process Xc is rriven by 

>.~; (:r Ix)= Ax (xje I x/c). 

Note that c(:r) == c under the as.mmptfon. 

P·mof First notice that the assumption implies that b(:i:, 1:r) = bc(x, r), see 
Proposition 1. 
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The conditional intensity of the locally scaled process is of the form 

,\~~(xjx)=3 IT ;p(Dc(YU{x})), 
yC1x 

where y <:;: 1 x is short for {y c:;: x: n(y) ;:: l}. Suppose that y c:;, b(x,er). 
Since 

= c- 1v 1([u,v]) = I.J 1([u/c,vjC]) for any u, u E b(xJr), 

we get 

Dc(yU{1:}) =D(y/CU{:i:/c}). 

On the other hand, suppose that there exists u E y such that u !fc b(1:, er). 
Thus, v1 ([u, :i:]) > r and therefore 

It follows that 

). ~: ( 1: I x) = B IT 'P ( D (y I c lJ { :i: I c})) = >-x ( x I c I x/ c") . 
yC1x 

5. Shot noise processes 

Shot noise processes are based on geometric quantities other than pairwise 
distances. \Vrite 

Cx(u) =I: 1 (u E b(x, r)) 
xEx 

for the template coverage function. Then a shot noise weighted point process 
with potential function p( ·) is defined by 

(12) 

where 'Y > 0 and p is a function on the non-negative integers IN0 with p(O) = 0. 
The integral J p(Cx(u))I.Jk(du) is taken on all IRk. The special case p(n) 
1 (n 2: 1) is known as area-interaction. 

The interaction functions of a shot noise process are 

;p(y) = ;3,-m(yl, n(y) = 1, 

<p(y) = ,-m(yJ, n(y) > 1, 
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where 

( ) 
n(y) ( ·. )) 

m(y)=vk nb(y,r) L 'Y (-lt(y)-lp(l), 
yEy l=l 

compare with Theorem 3.3 in Van Lieshout and :\.!olchanov [l OJ. As usual, ;p(0) 
is the normalizing constant. Homogeneous shot noise processes are :\.farkov 

with respect to the overlapping objects relation 

u ~ v ~ b(u, r) n b(v, r) -=f 0 ~ llu - vii '.".: 2r, (13) 

that means, the neighbourhood of a point is a ball with radius R = 2r. 
It is easy to show that 

g(x; i;') = [-JV0 (x)'Y- f P(L,Ex l(v1 ([x,u]):<;r)Jvk(d·u) 

is scale invariant. The locally scaled shot noise process has density 

JX'l(x) ex: g(x; v;) = 3n(x)1-Jp(C,,x(u))v~(duJ, x E 12,c,., (14) 

with scaled coverage function 

Cc,x(u) = L 1 (u E bc(:i:, r)). 
xEx 

Van Lieshout and :vfolchanov (1998) show that (12) is integrable if there exists 

some constant 0 < C < oo with 

ip(n)i S Cn I;/ n E lNo. (15) 

A similar result holds for the scaled process. 

Proposition 3. Under condition (15), g(-; v~) is ·integmbfr on rlx' for any 

..¥' E JBk and hence the locally srnled pr-oces.s defined by ( 14) does cxi,st. 

Proof. We show that there exists M > 0 such that 

g(x; v;) S lvfn(x), x E rl,Y'. 

This is fulfilled if 

I J~, p(C,,x(u))v;(du) I'.".: A1'n(x) 

for some 0 < M' < oo a11d all x E rl,y•. 
Let Sc(x) denote the support of Cc,x· As Cc,x(u) S n(x), we; have 

I L,p(C,,x(u))1;~(du) I::; Cn(x)1J;(S'c(x)) 

(16) 
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with C as in (15). Since 

Sc(x) = LJ bc(x, r) i;;; X' E9 b(O, er), 
;i:Ex 

where E9 denotes '.\1inkowski addition, and 

(16) holds with 

The locally scaled shot noise process has interaction functions 

where 

'Pc(Y) = ,8"(-m,(y), n(y) = 1, 

'Pc(Y) = ,.,,-m,(y), n(y) > 1, 

It follows that X 0 is '.Vlarkov with respect to the relation 

U"-'cV <===> bc(u,r)nb0 (v,r)i0 

<===> 3w : v~([u, w]) '.".: r I\ v~ ([w, v]) '.".: r. 

The neighbourhood of a point x is 

8c(x) = LJ b0 (w,r), 
wEba(x,r) 

15 

(17) 

(18) 

which in general is not ball shaped, but contains all points that are 2r-close 
to x with respect to v J. Additionally, it is possible that two points are 
neighbours in X 0 although their scaled distance is larger than 2r, since the 
triangular inequality does not necessarily hold for scaled distances defined by 
v~ . However, in analogy with the results obtained for the distance-interaction 
processes, the following proposition holds. 

Proposition 4. For a shot noise process, 

c(u) = c "</ u E b(x, 2cr) ==> 8c(x) = b(x, 2er). 
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Proof. Consider w E bc(x, r). Then b(w, er) C b(x, 2fr) and thus c(u) = c 
for all u E b(w, er). Therefore Proposition 1 yields 

bc(X, r) = b(x, er) and bc(W, r) = b( W, fr), 

and hence 

Bc(x) = LJ bc(w,r) = LJ b(w,cr) = b(x,2er). 
wEb.(x,r) wEb(x,er) 

If the scaling function is constant in a neighbourhood of a point x, the 
conditional intensity of a locally scaled shot noise process again behaves like 
under global scaling. 

Proposition 5. Let X be a shot noise point process with conditional intensity 
>..x. Suppose c(u) = c for all u E b(x, 2fr). Then the conditional intensity of 
the locally scaled process Xc is given by 

>..~; (x Ix) = ..\x (x/c I x/c). 

Proof. Since the conditional intensity can be written as a product of inter­
actions, >.x(x Ix) = Tiyc;;xn&(x) i.p(y u { x} l, we only need to show that 

This is fulfilled if 

mc(YU{x})=m(yUc{x}) for finite yCBc(x), y-:10, 

i.e. if 

v~( n bc(z,rl) =vk( n b(z,rJ). (19) 
zeyu{x} zE(yu{x})/c 

By the assumption, vc([z, w]) = c- 1v([z, w]) for any w, z E b(x, 2cr). Thus, for 
all z E Bc(x) = b(x,2er) (Proposition 4), we have 

WE bc(Z, r) n bc(X, r) {:=:} w E b(z, er) n b(x, er). 

Therefore, bc(z, r) n bc(x, r) = b(z, er) n b(x, er), and 

n bc(z,r) = n b(z,er) = n cb(z,r), 
zEyU{x} zEyu{x} zE(yu{x} )/c 

which immediately leads to (19). 
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Remark 1. In the present section, the focus has been on local scaling of 
homogeneous shot noise processes defined using balls b(x,r). It is possible 
to define a more general type of homogeneous shot noise process with b(x, r) 
replaced by x + Z where Z is an arbitrary bounded subset of JRk. The process 
has density of the form (12) with Cx(u) replaced by 

Cx(u) = L 1 (u Ex+ Z), u E lRk. 
:z:Ex 

If we for v E lRk let ii(v) = v/ Iv I, we can write 

Cx(u) = L 1 (v1 ([x, u]) ii(u - x) E Z). 
:z:Ex 

Using this expression instead of Cx( u) in (12) it is easy to see that the resulting 
density becomes scale invariant. It is therefore also possible to define local 
scaling of these more general processes. 

6. Approximation of local scaling 

For simulation of locally scaled Markov point processes using e.g. the :'vletro­
polis-Hastings algorithm (Geyer [4]), one has to evaluate expressions of the 
form g(x; v~). This usually involves integration with respect to scaled d­
dimensional volume measures v~. In the locally scaled distance-interaction 
processes introduced in Section 4, for example, we deal with scaled distances 

v~([u, v]) = 1. c(w)- 1dw = llu - vii f 1 c (u + t(v - u))- 1 dt 
[u,v] Jo (20) 

=!Ju - vii c=-1(u, v), 

where ;;.::r ( u, v) is the integral mean of the inverse scaling function w -+ 1 / c(w) 
on the segment [u, v]. 

For certain scaling functions c, such integrals can be expressed explicitly. 
However, if one strives to design programs that handle arbitrary scaling func­
tions, one would have to resort to numeric algorithms. Time consuming calcu­
lations can be avoided by defining approx·imately scaled processes that require 
only pointwise evaluation of the scaling function. 

Markov point processes comprise a large variety of models that are essentially 
different to each other e.g. with respect to the order of interaction, or to the 
dimensionality of volume measures involved in the definition of their density. 
There is no best recipe for approximate local scaling of all possible models. A 
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general met bod for pointwise local scaling of :\!arkov point pnwesses. baN•d on 
averaging thl' interaction functions. is presented in the first subsPetion. Tailnr­
made. more intuitive approaches for <listance-imeractio11 procf'sses and shot 
noise processes are suggested in the following subsections. 

Note that the met hods presented in the following do not n•quire :;cale irmiri­
ant density of the process. 

6.1. Local scaling by cp-averaging for Markov point processes 

In order to restrict the evaluation of c to the points in the pattern x 
{ .r1• • · • • :rn}, one could resort to interpreting local scaling as an average of 
global scalings, with scaling factors c(.r 1), · • • , c(:r,.). i.e. defining 

ft1(x) = Axerage(/x (x/c(:ri}l, · · · , fx(x/c(.r,J)). 

This would however invalidate the paradigm of locally defined interaction, since 
interact ion in a suliset y C x would then also be modified by scale factors taken 
from points outside y, in x \ y. 

In cases where the homogeneous process is :\larkov with interactiom; of finite 
order k, i.e. where .,;(y) = 1 if n(y) > k, a feasible concept of local averaging 
may be based on averaging interaction functions. We propose to define locally 
scaled interaction functions by the geometric mean 

( ) 

liTl(y) 

-Phl = II 9(y/c(y)J 
y!Oy 

n(y) 2: 1. (21 J 

Thns we obtain the density /~; by local ;p-avernging as 

J~}(x)cc IT ~c(y), 
Y~iX 

or, equivalently, 

f:dx) cc IT c(x)-k IT 9c(y). 
xEx Y~tX 

where y t;; 1 x is short for {y c;; x: n(y) 2: l}. Using the geometric mean in 
(21) is motivated by the fact that interaction functions are usually of the form 

rp(y) = exp(p(y)), 

where p( ·) is the so-called potential function. This notion stems from statistical 
physics, where :\larkov point processes were first described as Gibbs processes. 
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Taking the geometric mean of r.p means taking the arithmetic mean of the 
potential function, 

<Pc(Y) =exp ( n(~) ~p(y/c(y))), n(y) ~ 1. 

The following example of a Strauss process shows how this concept is applied 
to a distance-interaction process. 

Example (Strauss process, continued). An approximately locally scaled 
Strauss process Xc obtained by r.p-averaging has second-order interaction 

tfc( { u, V}) = /~(l(llu-vll:<;c(u)r)+l(llu-vll~c(v)r)). 

Therefore the density takes the form 

jj;'J (x) ex ,Bn(x) 1 sc(x), 

where sc(x) is calculated from the number of directed neighbours given by the 
relation 

u""'"' v ~ llu - vii::; c(u)r. 

The number of directed neighbours divided by two, 

f. 1 
sc(x)= L 2(1(u,,...v)+l(v,,...u)), 

{u,v}<;x 

can be considered as an approximation of the true number sc(x) of neighbours 
under local scaling, compare with Section 4. 

6.2. Local scaling by c-averaging for distance-interaction processes 

Locally scaled distance-interaction processes as introduced in Section 4 re­
quire only the calculation of scaled pairwise distances 

v~([·u,v]) = l:-1 (u,v)llu-vll, 

where c-1(u, v) denotes the integral mean of c- 1 over the segment [u, v], cf. 
(20). A natural idea is to replace the integral mean by a simpler mean ?i (u, v) 
of the inverse scaling factors c( u )-1 and c( v )- 1• We propose to use the harmonic 
mean 

~ 2 
c- 1(u, v) = ----------. 

c(u) + c(v) 
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The original neighbour relation u "'c v <='* v~([u, v]) $ r is thus approximated 

by 
1 Jiu-vii$ 2(c(u) +c(v))r. (22) 

This relation allows for a nice geometric interpretation. Two points u, v are 
neighbours iff the balls b(u, ~c(u)r) and b(v, !c(v)r) overlap. Note that (22) 
actually means that the scaling function c itself is locally replaced by the 
arithmetic mean Hc(u) + c(v)). Therefore we call this approach local scaling 

by c-averaging. 
In proper locally scaled distance-interaction processes, neighbourhoods are 

always star shaped, i.e. 

u "'c v ==}- u "'cw for all w E [u, v]. (23) 

Conversely, neighbourhoods in distance-interaction processes obtained by c­
averaging are not necessarily star shaped, as the example given in Figure 6 
shows. 

FIGURE 6: Neighbourhoods of four points in an approximately locally scaled 
distance-interaction process, obtained by c-avcraging with scale factor 
c = 1 in the left half and c = 2 in the right half of the domain. Compare 
with Figure 5, where the neighbourhoods of the same four points are 
shown in the genuine locally scaled process. 

However, a relatively weak Lipschitz condition on the scaling function en­
sures that the inhomogeneous point process has star shaped neighbourhoods. 

Proposition 6. Let X 0 be an inhomogeneous point process on X' E l!Bk ob­

ta-ined by c-averaging from a homogeneous distance-interaction process with 
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neighbour relation u"' v <=> llu - vii s r. Then Xc has star shaped neighbour­
hoods if the scaling function c satisfies 

2 lc(u) -c(v)I S -llu- vii for all u,v EX'. 
r 

(24) 

Proof. Let u, v E X' be related with respect to the approximated relation 
given by (22), ·u ~0 v, and let w E [u,v] be any point on the line segment 
between u and v. Then we need to show that w "'c ·u under the Lipschitz 
condition (24). This is trivially fulfilled if c(w) ~ c(v). Otherwise, by (24), 

2 
c(v) - c(w) S -llv - wll· 

r 

Recall that under c-averaging, 

2 
u "'c v ~ llu - vii S Hc(u) + c(v))r ~ c(u) + c(v) ~ -llv - ull· 

r 

Subtracting the two inequalities, we find that 

2 2 
c(u) + c(w) ~ -(llv - uil - llv - wll) = - llu - wll, 

r r 

thus u "'cw. 

Example (Strauss process, continued). As for <p-averaging, the density of 
an approximately locally scaled Strauss process obtained by c - averaging is 
of the form 

JJ;; (x) QC (3n(x) 1 sc(x). 

Now, 
"I 

s0 (x) = L 1 (u "'c v) 
{u,v}<;;x 

is the number of neighbour pairs with respect to the approximate neighbour 
relation "'c given by (22). 

6.3. Local scaling by infiuence zones for shot noise processes 

Shot noise processes as defined in Section 5 require the evaluation of the 
coverage function 

xEx 

which gives the number of "influence zones" b0 (x, r) covering a point u. In 
Proposition 1 we saw that b0 (x,r) = b(x,er) if c(u) = c = c(x) for all ·u E 
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b(x,cr) = b(x,c(x)r). Assuming that c does not vary very much in b(x, c(x)r), 
we can use this result to approximate the influence zones by 

bc(x,r) ~ b(x,c(x)r) 

and thus obtain the coverage function 

Cc,x(u) = L 1 (u E b(x, c(x)r)). 
:rEx 

Calculating the density function 

j);l(x) DC pn(x)1 - j'p(Cc.x(u))v~(du) 

still requires integration with respect to the locally scaled measure v:. But 
even when dealing with homogeneous processes, the integral J p(Cc,x(u))du is 
usually approximated by grid methods. Once the coverage function Cc,x(·) is 
known, evaluating 

f p(Cc,x(u))v~(du) = f p(Cc,x(u))c(u)-kvk(du) 
lm.k lm.k 

is therefore no bigger a problem than evaluating the corresponding integral in 
a homogeneous (template) setting. 

7. Sequential local scaling 

Sometimes it is more appropriate to consider a given point pattern as an or­
dered sequence of points rather than merely as an unordered set. For example, 
trees in a forest stand can clearly be ordered by age which corresponds to a 
natural sequence of emergence. In point pattern theory, the simple sequential 
inhibition (SSI) point process results from successively adding points to a 
bounded window such that a new point keeps a minimum distance to the 
points that have been added before. 

Since sequential point processes have been quite rarely considered in the 
literature so far, we will first recall a few facts before presenting a general 
approach to define locally scaled versions of homogeneous Markov sequential 
point processes. 

A sequential point process X on X E Jak is a random variable taking values 
in n,,x, the set of all finite sequences x = (x 1, • · • , xn) of points in X. The set 
n.,x is equipped with the a-algebra :F.,x generated by the Borel a-algebras En 
on xn. In the following, we will consider sequential point processes that have 
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a density f x with respect to the probability measure µ on 12,,x, where for all 

FE :Fs,:i: 

oo -v•(x) 1 1. µ(F) = Z:-e-.-1 - ••. l((x1,··· ,x,J E F)dvk(xi)···dvk(xn)· 
n=O n. X X 

This measure on the space [12s,x, :F,,x] of sequential point sets corresponds 

to the unit rate Poisson point process for unordered (non sequential) point 

processes on [nx, :F,,x]. 
For sequential point processes, the Papangelou conditional intensity, 

J g(xi, · · · , Xn) > 0, 

otherwise, 
(25) 

gains a particularly intuitive meaning, since .Ax ( x I x) vk ( dx) relate~ to the 

conditional probability of adding a new point .T in a region d:r: to an existing 

sequence x = (.r 1 , • • • , Xn)· 
In analogy to hereditary (unordered) point processe8, we define hereditary 

sequential point processes as follows. 

Definition 4. A sequential point process J!. with density f x is called hered·i­

tary if J.y(1:1, · · · , Xn) > 0 implies f g(x1, · · · , Xrn) > 0 for all m < n. 

If a sequential point process is hereditary, then, as a consequence of (25), 

the density can be written as 

n 

fx(x1, ... 'x,.) oc IT \y(.Tj I x<Jl, 
j=\ 

(26) 

This gives rise to a straightforward idea of defining local scaling in the 

sequential context by means of locally scaled conditional intensities. \Ve start 

again with a homogeneous, now sequential, template process i, which means 

that J x and hence Ax are translation invariant and in principle defined for 
any finite point sequence in IR.k. Motivated by the effect of global scaling on 

the conditional intensity, cf. (3), we require that the Papangelou conditional 

intensity of the scaled sequential process ,ye fulfils 

(c) . ~ _ ( x I x. ) >.l(-(xlx)-.Ag-() -(-), ., ex ex 
(27) 

where c as before is a measurable, bounded scaling function that is bounded 
away from 0. Note that for locally scaled unordered point processes, the 
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corresponding property (9) is only fulfilled in regions where the scaling function 
c is constant. 

Definition 5. Suppose }( is a homogeneous hereditary sequential point pro­
cess on X with Papangelou conditional intensity Ax given by (25). Let µ" be 
the distribution of a sequential Poisson point process with the locally scaled 
volume measure v~ as intensity measure, and let X' E Jffik be arbitrary. 
Then the locally scaled sequential point process Xc on X' with template X is 
defined by the density 

.. ( I - ) (c) Xj X<j f (x1,···,Xn)cxIT>.- --- ---x, . x c(x·) c(x·) 
J=I J J 

(28) 

with respect to µc, provided that j ft, is integrable on !1s,X'. 

Sequential templates can easily be obtained from homogeneous unordered 
point processes, since any unordered point process X on X with a density f x 
with respect to the unit rate Poisson point process can be converted into a 
corresponding ordered point process ,f, by defining the density f x with respect 
toµ as 

fx(x1,· ·· ,xn) = fx({x1,··· ,xri}). (29) 

This means every permutation of x has the same density, see also Daley and 
Vere-Jones [3, p. 122]. We shall refer to the process ,f, with density (29) as the 
sequential'ized version of the process X. 

Clearly, the sequentialized process X is hereditary if the unordered process 
X is hereditary. Combining (25) and (29), the Papangelou conditional intensity 
of a seq uentialized process becomes 

Thereby, the Papangelou conditional intensity of the corresponding locally 
scaled point process Xc is 

).. x x = >.x -- --· (c) ( I _) ( X I X ) 
x, c(:i:) c:(x) ' (30) 

cf. (27), and the density (28) of Xc becomes 

(31) 
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The locally scaled process .Ye is locally stable, i.e. ,\~; is bounded above, if 
the homogeneous unordered template X is locally stable, i.e. if >-x is bounded 
above. Then (31) is integrable. As before, a constant scaling function simply 
yields a globally scaled sequential point process. Note in particular that a 
locally scaled sequential point process is isotropic in the sense of ( 10) if the 
template is isotropic. 

7.1. Sequential Markov point processes 

As a special class of hereditary processes, we define sequential Markov point 
processes with respect to a directed relation. 

Definition 6. A sequential point process .f. with density f x is said to be 
Markov with respect to a directed relation ..,.., if .f. is hereditary and if the 
conditional intensity >-x(x Ix) depends only on the point x and on its set of 
directed neighbours in x, o(x) n x = {x; Ex: x...,... x;}. 

The following proposition suggests a way to construct locally scaled sequen­
tial Markov point processes from unordered Markov templates. 

Proposition 7. Let X be a locally stable, homogeneous (unordered) point pro­
cess with density f x on X E Jak. If X is Markov with respect to some symmetric 
relation "-', then the locally scaled sequential process Xc defined by {31} is 
Markov with respect to the directed relation 

u v 
U""'cV{=:? c(u)"' c(u)° (32) 

Proof. First we show that Xc is hereditary. By equation (31), 

n ( I ) _ (c) Xk X<k 
- 0<fx (x1, ·· · ,xm) TI >.x -(-) -(-) , 

c k=m+I C Xk C Xk 

where °' is the normalizing constant. Therefore, /;; (x1 , · • · , Xm) = 0 implies 

f~~ (x 1, .. · , Xn) = 0 if m ::; n. Secondly, by (30) and the fact that X is :\1arkov, 

the sequential conditional intensity >-i; (x Ix) depends only on those sequence 
elements x; for which x/c(x) "'x;/c(x) and the proof is complete. 

Note that the result reflects a similar proposition for global scaling: if the 
template X is :.Vfarkov with respect to some relation ~, its global scaling cX 
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by a factor c > 0 is Markov with respect to 

1L ~c v ~ 'U/c ~ v/c, 

see Jensen and Nielsen [7]. 

Example (Strauss process, continued). For a Strauss process X, .Ax(x ! x) 
= 81'(x;x), where s(x; x) = s(x U { x}) - s(x) denotes the number of points in 
x that are closer than r to the new point :c '/: x. Here 

f (c)(x· ". x ) ex 13n 'Vs,(x,, .. .,x,,) 
Xr 11 ' n r ' 

with 

i<j 'i<j 

where 

xJ .,,..,c Xi ~ llxJ - xiii :S: c(:cJ)r. 

This is the same directed neighbour relation as in cp-averaging, see page 18. 
Specializing to the hard core model ( / = 0), we obtain a sequential inhibition 

model in which each point upon arrival keeps a distance c(:cj )r away from 
previously arrived points, cf. also Clausen et al [2]. 

The ,.._,c-neighbourhood of a point u EX', 

Bc(u) = {x EX': u ......; 0 :c} = c(u)B('U/c(u)) 

is equal to the neighbourhood in the template process scaled by a factor c(u). 
In particular, the neighbourhood system Be(-) inherits from 8( ·) geometric 
properties such as convexity that are invariant under scaling. 

To the fixed range relation u ~ v ~ u 1 ([u, v]) :S: r in distam:e-interaction 
processes corresponds the directed relation under local scaling, 

since>.(~; (xl 
to i:, cf. (32). 

, Ln)) dPpends only on those :ci that are closer than c(:i:)r 

Iu the context of shot noise processes (Section 5), the overlapping objects 
relation u ~ o ~ b(u, r) n b(v, r) i' !/J transforms int.o the directed relation 

u .,,..,,, u ~ b(u./r:(v.), r) II b(v/c(u), r) i' !/J {=} b(u, c(u)r) Ii b(v, c(u)r) 7" !/J. 
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In other words, the influence zone at u associated with Xc is the influence zone 
of X scaled by c(u). 

An analogue of the Hammersley-Clifford factorization can be given for den­
sities of locally scaled sequential Markov point processes, see the Appendix. 
Here we also show how these sequential point processes are related to unordered 
inhomogeneous point processes obtained by rp-averaging. 

Note that it is always possible to map a sequential process to a classical point 
process by averaging its density over permutations. If we use the geometric 
average instead of the usual arithmetic average, the resulting process is identical 
to that obtained by rp-averaging in Section 6.1. 

8. Discussion 

Inhomogeneity in natural structures may be caused by very different mech­
anisms. Correspondingly, there is a myriad of ways to define inhomogeneous 
models. Therefore some restrictions have to be introduced that replace the 
usual homogeneity condition. The three models for inhomogeneous point 
processes described in the introduction stand for three different situations. In 
the first model, the interaction between points is independent of location. In 
the second model, inhomogeneity results from a (physical) location dependent 
thinning, and in the third from (physical) deformation of the matrix. In this 
paper we introduced a yet fourth approach which yields models for patterns 
that are homogeneous up to a local scale factor. Such point processes may 
describe packings of spheres with diameters that vary with location, cf. Figure 
1, or situations where both intensity and interaction are governed by the same 
external factor, such as desert plant communities that are ruled by water 
supply. 

When it comes to choosing an appropriate model for a given situation, there 
will sometimes be prior information about the physical genesis of the patterns 
that strongly suggests one of the approaches. In general however it will be 
necessary to define criteria for the best choice which then can be used to develop 
model tests. A test on the local scaling assumption could exploit scale invariant 
local geometric properties, as e.g. shape factors of corresponding Voronoi cells. 

The intensity Ac(x) of a globally scaled point process is proportional to the 
intensity ,\of the template, ,\0 (x) = c-k ..\(x/c) Rl c-k A, since the intensity of a 
homogeneous template is approximately constant. Analogously, the intensity 
of a locally scaled process is (approximately) 

(33) 
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This allows firstly to model practically any inhomogeneous intensity and, sec­

ondly, to retrieve the scaling function (up to a proportionality constant) from 

a given or estimated density. In this aspect the scaling function plays a similar 

role as the survival probability of the thinning model. 

Once the scaling function has been estimated, it can be used to subsequently 
fit the parameters of the template process and thus to complete the model 
specification. A similar approach has been followed by Nielsen and Jensen [12] 
for fitting the transformation model. Furthermore possible empirical relations 

between an estimated scaling function and explanatory variables such as water 

supply in the desert vegetation case can be used for prediction purposes. 

Future work will concentrate on validating the approximation (33) as well 

as on development of model tests and other statistical methods. 
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Appendix A. Appendix: Local scaling of Markov point processes, 

general case 

The density fx(-) = g(-; v*) of a homogeneous :Viarkov point process is scale 

invariant iff the interaction function <p(-) = h(·; v*) is scale invariant. Then the 

Hammersley-Clifford factorization of f x reads 

g(x; IJ') =IT h(y; v*), 
y£x 

which allows to factorize the density of the locally scaled equivalent Xc as 

fkl(x) =IT 'Pc(y), tpc(y) = h(y; v;). (34) 
ys;;x 

It is indeed possible to define a neighbour relation "'c such that 'Pc is a 
proper interaction function. Hence the locally scaled process is Y!arkov, too. 

The following definition which may look a little awkward at the first glance is 
in fact consistent with the simple neighbour relations derived earlier for locally 

scaled distance-interaction and shot noise processes. 

Definition A.I. Corrnider a function 'Pc on nx, as given by (34). Two points 
·u and v are called neighbo·urs w'ith T"espect to the scaled relation "'c, iff there 

exists a finite point configuration y E nx, such that 

'Pc(Y U { u, v}) i- 1. 

Proposition A.I. Let Xc be an inhomogeneous point process obtained by local 

srnling of a homogeneous MuTkov ternplute w'ith scale invariant interaction 

function, such that the dens'ity fie! cun be factorized as 'in (34). Then Xc 
·is MuTkov with T"espect to the neighbour relation "'c g'iven ·in Definition A.1. 

Proof. The proposition follows from the Hammersley-Clifford theorem, if the 

function 'Pc is a proper interaction function with respect to the relation "'c, i.e. 
if 'Pc(Y) =f l implies that y is a "'c clique. To see this, consider a set y with 

n(y) ;::: 2 and 'Pc(Y) i- 1. Then, by definition, any two points 'It and v in y are 

neighbours with respect to "'c, as 'Pc(y'U{u, v}) '/- 1 with y* = y\ {u, v} E rlx'· 

Appendix B. Appendix: Some results for locally scaled sequential 
Markov point processes 

First, we give an analogue of the Hammersley Clifford factorization (1) for 
locally scaled sequential Markov point processes. 
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Proposition B.1. Let X be a locally stable, homogeneous point process with 
density fx on X E Bk. If X is Markov with interaction function <p, then 

the density f~! of the corresponding locally scaled sequential process can be 
factorized as follows: 

f (c)( ) ITn IT (yU{xj}) 
Xc X1' ... 'Xn OC . 'P c(x ·) ' 

J~l yf;X<j J 

(35) 

wherex<i = {x1,··· ,Xj-1}. 

Proof. From the Hammersley-Clifford factorization off x one derives 

from which the result follows by (31). 

We may define a sequence y to be an x-clique if y either has length zero or 
all its members y E y satisfy x ._.c y. Note that if y is no x-clique, a point 

y E y can be found such that x f+c y, or equivalently c(:) 7- c(?,· But then 
(y U {x} )/c(x) is no "'-clique, which implies .p((y U {x} )/c(x)) = 1. It follows 
that (35) is a product of genuine clique interaction functions. 

As already mentioned in Section 7, the density of a classical non ordered 
point process can be obtained by averaging the density of a sequential process 
over permutations. If we use the geometric average, the resulting process is 
identical to that obtained by .p-averaging in Section 6.1. 

Proposition B.2. Let X be a homogeneous Markov point process with density 

f x on X E Bk and with interaction function .p, and let f~! be the density of 
the corresponding locally scaled sequential process. Then the geometric average 
of f'!:l (x) over all permutations of x is equal to the density with respect to IIc 

Xc 
of a locally scaled point process obtained by .p-averaging, i.e. 

1;;(x) = (ITx_ f;;(x)) l/n(x)! oc IT iPc(y), 
yc;1x 

where the product IT,.., is over all permutations of x and iPc(Y) is as defined in 

(21), 

( ) 

1/n(y) 

<Pc(Y) = IT <p(y/c(y)) , 
yEy 

n(y) 2': 1. 
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Proof. Note that 

n 

II II g(y,xj) =II g(y\ {Ym;aLYm,,), 

where y,,,_, is the latest member of yin a given permutation x = (xt, · · · ,xn) 
of x = {xt, · · · , :i:,,}. Furthermore, for any given non empty subset y <;; x, 

( ) 

n(x)!/n(y) 

II g(y \ {ymJ, YmJ = II g(y \ {y}) ' 
X yEy 

where the product flx is over all permutations of x. To see the latter, fix 

y E y. Then y = Ymx' i.e. y occurs as latest arrival out of yin n(x)!/n(y) 
permutations of x. To complete the proof, combine the two identities, let 

g(y,y) = <p(~fifl and apply (35). 


