68 research outputs found

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Raman spectroscopy as a tool to determine the thermal maturity of organic matter : application to sedimentary, metamorphic and structural geology

    Get PDF
    Raman spectrometry is a rapid, non-destructive alternative to conventional tools employed to assess the thermal alteration of organic matter (OM). Raman may be used to determine vitrinite reflectance equivalent OM maturity values for petroleum exploration, to provide temperature data for metamorphic studies, and to determine the maximum temperatures reached in fault zones. To achieve the wider utilisation of Raman, the spectrum processing method, and the positions and nomenclature of Raman bands and parameters, all need to be standardized. We assess the most widely used Raman parameters as well as the best analytical practices that have been proposed. Raman band separation and G-band full-width at half-maximum are the best parameters to estimate the maturity for rocks following diagenesis–metagenesis. For metamorphic studies, the ratios of band areas after performing deconvolution are generally used. Further work is needed on the second-order region, as well as assessing the potential of using integrated areas on the whole spectrum, to increase the calibrated temperature range of Raman parameters. Applying Raman spectroscopy on faults has potential to be able to infer both temperature and deformation processes. We propose a unified terminology for OM Raman bands and parameters that should be adopted in the future. The popular method of fitting several functions to a spectrum is generally unnecessary, as Raman parameters determined from an un-deconvoluted spectrum can track the maturity of OM. To progress the Raman application as a geothermometer a standardized approach must be developed and tested by means of an interlaboratory calibration exercise using reference materials

    Proteomic Analysis of Alfalfa (Medicago sativa L.) Roots in Response to Rhizobium Nodulation and Salt Stress

    No full text
    (1) Background: Alfalfa is an important legume forage throughout the world. Although alfalfa is considered moderately tolerant to salinity, its production and nitrogen-fixing activity are greatly limited by salt stress. (2) Methods: We examined the physiological changes and proteomic profiles of alfalfa with active nodules (NA) and without nodules (NN) under NaCl treatment. (3) Results: Our data suggested that NA roots showed upregulation of the pathways of abiotic and biotic stress responses (e.g., heat shock proteins and pathogenesis-related proteins), antioxidant enzyme synthesis, protein synthesis and degradation, cell wall degradation and modification, acid phosphatases, and porin transport when compared with NN plants under salt stress conditions. NA roots also upregulated the processes or proteins of lipid metabolism, heat shock proteins, protein degradation and folding, and cell cytoskeleton, downregulated the DNA and protein synthesis process, and vacuolar H+-ATPase proteins under salt stress. Besides, NA roots displayed a net H+ influx and low level of K+ efflux under salt stress, which may enhance the salt tolerance of NA plants. (4) Conclusions: The rhizobium symbiosis conferred the host plant salt tolerance by regulating a series of physiological processes to enhance stress response, improve antioxidant ability and energy use efficiency, and maintain ion homeostasis

    Overexpression of zeaxanthin epoxidase gene from Medicago sativa enhances the tolerance to low light in transgenic tobacco

    No full text
    Zeaxanthin epoxidase (ZEP) plays an important role in xanthophyll cycle which is a process closely related to photosynthesis. However, an impact of ZEP on low-light stress has not been studied. In this study, the functions of an alfalfa (Medicago sativa) zeaxanthin epoxidase gene, MsZEP, in response to low-light stress were investigated by heterologous expression in tobacco (Nicotiana tabacum). Under normal light conditions, the measured parameters were not significantly different between transgenic and wild-type (WT) plants except for non-photochemical quenching value and chlorophyll a content. However, the differences were detected under low-light stress. We found that MsZEP-overexpression tobacco grew faster than WT (p≤0.05). The leaf fresh weight and leaf area of transgenic plants were significantly higher, and the number of stomata was greater in MsZEP-overexpression tobacco. As for photosynthetic characteristics, quantum yield of PSII (ΦPSII) and maximal photochemical efficiency of PSII (Fv/Fm) were not significantly different, whereas non-photochemical quenching (NPQ), net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of MsZEP-overexpression tobacco were significantly higher than in WT plants. However, no significant difference was detected between the two types of tobacco in chlorophyll and carotenoids content. In conclusion, MsZEP can improve the ability of tobacco to withstand low-light stress, which might be due to its stronger photosynthetic activity and the improvement of stomatal density under low light

    Identification of Competing Endogenous RNAs (ceRNAs) Network Associated with Drought Tolerance in Medicago truncatula with Rhizobium Symbiosis

    No full text
    Drought, bringing the risks of agricultural production losses, is becoming a globally environmental stress. Previous results suggested that legumes with nodules exhibited superior drought tolerance compared with the non-nodule group. To investigate the molecular mechanism of rhizobium symbiosis impacting drought tolerance, transcriptome and sRNAome sequencing were performed to identify the potential mRNA–miRNA–ncRNA dynamic network. Our results revealed that seedlings with active nodules exhibited enhanced drought tolerance by reserving energy, synthesizing N-glycans, and medicating systemic acquired resistance due to the early effects of symbiotic nitrogen fixation (SNF) triggered in contrast to the drought susceptible with inactive nodules. The improved drought tolerance might be involved in the decreased expression levels of miRNA such as mtr_miR169l-5p, mtr_miR398b, and mtr_miR398c and its target genes in seedlings with active nodules. Based on the negative expression pattern between miRNA and its target genes, we constructed an mRNA–miR169l–ncRNA ceRNA network. During severe drought stress, the lncRNA alternative splicings TCONS_00049507 and TCONS_00049510 competitively interacted with mtr_miR169l-5p, which upregulated the expression of NUCLEAR FACTOR-Y (NF-Y) transcription factor subfamily NF-YA genes MtNF-YA2 and MtNF-YA3 to regulate their downstream drought-response genes. Our results emphasized the importance of SNF plants affecting drought tolerance. In conclusion, our work provides insight into ceRNA involvement in rhizobium symbiosis contributing to drought tolerance and provides molecular evidence for future study

    Integrated physiological, metabolomic, and transcriptomic analyses elucidate the regulation mechanisms of lignin synthesis under osmotic stress in alfalfa leaf (Medicago sativa L.)

    No full text
    Abstract Alfalfa, an essential forage crop known for its high yield, nutritional value, and strong adaptability, has been widely cultivated worldwide. The yield and quality of alfalfa are frequently jeopardized due to environmental degradation. Lignin, a constituent of the cell wall, enhances plant resistance to abiotic stress, which often causes osmotic stress in plant cells. However, how lignin responds to osmotic stress in leaves remains unclear. This study explored the effects of osmotic stress on lignin accumulation and the contents of intermediate metabolites involved in lignin synthesis in alfalfa leaves. Osmotic stress caused an increase in lignin accumulation and the alteration of core enzyme activities and gene expression in the phenylpropanoid pathway. We identified five hub genes (CSE, CCR, CADa, CADb, and POD) and thirty edge genes (including WRKYs, MYBs, and UBPs) by integrating transcriptome and metabolome analyses. In addition, ABA and ethylene signaling induced by osmotic stress regulated lignin biosynthesis in a contradictory way. These findings contribute to a new theoretical foundation for the breeding of high-quality and resistant alfalfa varieties
    corecore