1,658 research outputs found
Preparation of a low viscosity urethane-based composite for improved dental restoratives
Several new urethane-based dimethacrylates were synthesized, characterized and used to formulate the resin composites. Compressive strength (CS) was used as a screen tool to evaluate the mechanical property of the formed composites. Flexural strength, diametral tensile strength, water sorption, degree of conversion and shrinkage of the composites were also evaluated. The results show that most of the synthesized urethane-based dimethacrylates were solid, which are not suitable to dental filling restorations. However, it was found that liquid urethane-based dimethacrylates could be derivatized using asymmetrical methacrylate synthesis. Not only the newly synthesized urethane-based dimethacrylates showed lower viscosity values but also their constructed composites exhibited higher mechanical strengths. Without triethyleneglycol dimethacrylate (TEGDMA) addition, the new urethane-constructed composites showed significantly lower water sorption and shrinkage
Antimicrobial resistance and the growing threat of drug-resistant tuberculosis
The purpose of this study was to investigate the associations between birth weight, chest circumference, and lung function in preschool children from e-waste exposure area. A total of 206 preschool children from Guiyu (an e-waste recycling area) and Haojiang and Xiashan (the reference areas) in China were recruited and required to undergo physical examination, blood tests, and lung function tests during the study period. Birth outcome such as birth weight and birth height were obtained by questionnaire. Children living in the e-waste-exposed area have a lower birth weight, chest circumference, height, and lung function when compare to their peers from the reference areas (all p value <0.05). Both Spearman and partial correlation analyses showed that birth weight and chest circumference were positively correlated with lung function levels including forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). After adjustment for the potential confounders in further linear regression analyses, birth weight, and chest circumference were positively associated with lung function levels, respectively. Taken together, birth weight and chest circumference may be good predictors for lung function levels in preschool children
Regeneration of Different Plant Functional Types in a Masson Pine Forest Following Pine Wilt Disease
Pine wilt disease is a severe threat to the native pine forests in East Asia. Understanding the natural regeneration of the forests disturbed by pine wilt disease is thus critical for the conservation of biodiversity in this realm. We studied the dynamics of composition and structure within different plant functional types (PFTs) in Masson pine forests affected by pine wilt disease (PWD). Based on plant traits, all species were assigned to four PFTs: evergreen woody species (PFT1), deciduous woody species (PFT2), herbs (PFT3), and ferns (PFT4). We analyzed the changes in these PFTs during the initial disturbance period and during post-disturbance regeneration. The species richness, abundance and basal area, as well as life-stage structure of the PFTs changed differently after pine wilt disease. The direction of plant community regeneration depended on the differential response of the PFTs. PFT1, which has a higher tolerance to disturbances, became dominant during the post-disturbance regeneration, and a young evergreen-broad-leaved forest developed quickly after PWD. Results also indicated that the impacts of PWD were dampened by the feedbacks between PFTs and the microclimate, in which PFT4 played an important ecological role. In conclusion, we propose management at the functional type level instead of at the population level as a promising approach in ecological restoration and biodiversity conservation
MicroRNA390-Directed TAS3 Cleavage Leads to the Production of tasiRNA-ARF3/4 During Somatic Embryogenesis in Dimocarpus longan Lour
Trans-acting short-interfering RNAs (tasiRNAs) originate from TAS3 families through microRNA (miRNA) 390-guided cleavage of primary transcripts and target auxin response factors (ARF3/-4), which are involved in the normal development of lateral roots and flowers in plants. However, their roles in embryo development are still unclear. Here, the pathway miR390-TAS3-ARF3/-4 was identified systematically for the first time during somatic embryo development in Dimocarpus longan. We identified the miR390 primary transcript and promoter. The promoter contained cis-acting elements responsive to stimuli such as light, salicylic acid, anaerobic induction, fungal elicitor, circadian control and heat stress. The longan TAS3 transcript, containing two miR390-binding sites, was isolated; the miR390- guided cleavage site located near the 3' end of the TAS3 transcript was verified. Eight TAS3-tasiRNAs with the 21-nucleotide phase were found among longan small RNA data, further confirming that miR390-directed TAS3 cleavage leads to the production of tasiRNA in longan. Among them, TAS3_5'D5+ and 5'D6+ tasiRNAs were highly abundant, and verified to target ARF3 and -4, implying that miR390-guided TAS3 cleavage with 21-nucleotide phase leading to the production of tasiRNA-ARF is conserved in plants. Pri-miR390 was highly expressed in friable-embryogenic callus (EC), and less expressed in incomplete compact pro-embryogenic cultures,while miR390 showed its lowest expression in EC and highest expression in torpedo-shaped embryo. DlTAS3 and DlARF4 both exhibited their lowest expressions in EC, and reached their peaks in the globular embryos stage, which were mainly inversely proportional to the expression of miR390, especially at the GE to CE stages. While DlARF3 showed little variation from the EC to torpedo-shaped embryos stages, and exhibited its lowest expression in the cotyledonary embryos stage. There was a general lack of correlation between the expressions of DlARF3 and miR390. In addition, miR390, DlTAS3, DlARF3, and -4 were up-regulated by 2,4-D in a concentration-dependent manner. They were also preferentially expressed in roots, pulp, and seeds of ‘Sijimi’ longan, implying their extended roles in the development of longan roots and fruit. This study provided insights into a possible role of miR390-tasiRNAs-ARF in plant somatic embryo development
Intermodal Interference in Four-Mode Air-Silica Microstructure Fiber
Intermodal interference pattern along the fiber core has been observed when a properly femtosecond pulse is coupled into the four modes air-silica microstructure fibers. The interference pattern is well explained by using the modified effective refraction index model
The Reproducibility of Lists of Differentially Expressed Genes in Microarray Studies
Reproducibility is a fundamental requirement in scientific experiments and clinical contexts. Recent publications raise concerns about the reliability of microarray technology because of the apparent lack of agreement between lists of differentially expressed genes (DEGs). In this study we demonstrate that (1) such discordance may stem from ranking and selecting DEGs solely by statistical significance (P) derived from widely used simple t-tests; (2) when fold change (FC) is used as the ranking criterion, the lists become much more reproducible, especially when fewer genes are selected; and (3) the instability of short DEG lists based on P cutoffs is an expected mathematical consequence of the high variability of the t-values. We recommend the use of FC ranking plus a non-stringent P cutoff as a baseline practice in order to generate more reproducible DEG lists. The FC criterion enhances reproducibility while the P criterion balances sensitivity and specificity
Five-Section Trajectory Design of Thick Glutenite Reservoir in Shengli Oilfield
Many blocks of Shengli Oilfield are located in urban areas, and the site selection of well sites is limited. In order to meet the needs of reservoir development and deployment, five-section trajectory is increasingly used. Difficulty in site selection results in directional well development, and reservoir deployment requires vertical well development. In order to resolve the two contradictions, five-section trajectory is used in the well design, and vertical drilling after hitting the target. The problems with this type of trajectory are high torque drag and easier fatigue of the drilling pipe. When the displacement is small, the effect is small. When the displacement is large, it will cause engineering complexity such as difficulty drilling weight transfer and fatigue of drilling pipe. Aiming at the shortcomings of the five-section trajectory, with the help of existing drill string force analysis software, the parameters of the five-section trajectory were analyzed, and reasonable values were recommended to provide an optimization idea for the five-section trajectory
- …
